The Lp-Brunn-Minkowski inequality for p < 1

被引:39
作者
Chen, Shibing [1 ]
Huang, Yong [2 ]
Li, Qi-Rui [3 ,4 ]
Liu, Jiakun [5 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Hunan Univ, Inst Math, Changsha 410082, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[4] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 2601, Australia
[5] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
L-p-Brunn-Minkowski inequality; Logarithmic-Minkowski inequality; REGULARITY;
D O I
10.1016/j.aim.2020.107166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we confirm the L-p-Brunn-Minkowski inequality conjecture for p close to 1. The logarithmic-Brunn-Minkowski inequality is also verified for convex bodies close to the unit ball in Hausdorff distance. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 36 条
  • [1] Alexandrov A.D., 1996, SELECTED WORKS 1, V4
  • [2] [Anonymous], 1999, Topol. Methods Nonlinear Anal, DOI DOI 10.12775/TMNA.1999.029
  • [3] The Lp-Minkowski problem for -n < p < 1
    Bianchi, Gabriele
    Boroczky, Karoly J.
    Colesanti, Andrea
    Yang, Deane
    [J]. ADVANCES IN MATHEMATICS, 2019, 341 : 493 - 535
  • [4] Böröczky KJ, 2013, J AM MATH SOC, V26, P831
  • [5] The log-Brunn-Minkowski inequality
    Boeroeczky, Karoly J.
    Lutwak, Erwin
    Yang, Deane
    Zhang, Gaoyong
    [J]. ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1974 - 1997
  • [6] On the Discrete Logarithmic Minkowski Problem
    Boroczky, Karoly J.
    Hegedus, Pal
    Zhu, Guangxian
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (06) : 1807 - 1838
  • [7] Asymptotic behavior of flows by powers of the Gaussian curvature
    Brendle, Simon
    Choi, Kyeongsu
    Daskalopoulos, Panagiota
    [J]. ACTA MATHEMATICA, 2017, 219 (01) : 1 - 16
  • [8] INTERIOR W2,P ESTIMATES FOR SOLUTIONS OF THE MONGE-AMPERE EQUATION
    CAFFARELLI, LA
    [J]. ANNALS OF MATHEMATICS, 1990, 131 (01) : 135 - 150
  • [10] THE LOGARITHMIC MINKOWSKI PROBLEM FOR NON-SYMMETRIC MEASURES
    Chen, Shibing
    Li, Qi-Rui
    Zhu, Guangxian
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (04) : 2623 - 2641