Positive solutions for a system of second-order quasilinear boundary value problems

被引:1
作者
Yang, Zhilin [1 ]
Wang, Xiaomei [1 ]
Li, Hongyu [2 ]
机构
[1] Qingdao Univ Technol, Dept Math, 11 Fushun Rd, Qingdao 266033, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear boundary value problem; Positive solution; A priori estimate; Fixed point index; Jensen's inequality; Homogeneous operator; PERIODIC-SOLUTIONS; EXISTENCE; ZERO; (P;
D O I
10.1016/j.na.2020.111749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence and multiplicity of positive solutions for the system of second-order quasilinear boundary value problems {-((u')(p-1))' = f(t,u,upsilon), -((nu')(q-1))' = f(t,u,upsilon), u(0) = u'(1) = 0, u(0) = nu'(1) = 0, where p, q > 1 and f, g is an element of C([0, 1] x R-+(2), R+)(R+ := [0,infinity)). Based on a priori estimates achieved by utilizing Jensen's inequality for nonnegative concave functions and homogeneous operators, we use fixed point index theory to establish the main results. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 51 条
[1]  
Agarwal R.P., 2003, ARCH INEQUAL APPL, V1, P119
[2]   Existence and multiplicity of positive solutions for singular semipositone p-Laplacian equations [J].
Agarwal, RP ;
Cao, DM ;
Lü, HS ;
O'Regan, D .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (03) :449-475
[3]   Positive solutions for a class of p-Laplacian systems with multiple parameters [J].
Ali, Jaffar ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1013-1019
[4]   Landesman-Lazer type conditions for a system of p-Laplacian like operators [J].
Amster, Pablo ;
De Napoli, Pablo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1236-1243
[5]  
[Anonymous], 1989, J DIFFER EQU
[6]   Existence of three positive pseudo-symmetric solutions for a one dimensional p-Laplacian [J].
Avery, R ;
Henderson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (02) :395-404
[7]   Multiple positive solutions for some p-Laplacian boundary value problems [J].
Bai, ZB ;
Gui, ZJ ;
Ge, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (02) :477-490
[8]  
Ben-Naoum A.K., 1997, Differential Integral Equations, V10, P1093
[9]   ON A NONLINEAR PARABOLIC PROBLEM ARISING IN SOME MODELS RELATED TO TURBULENT FLOWS [J].
DIAZ, JI ;
DETHELIN, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1085-1111
[10]   Multiple solutions for three-point boundary value problem with nonlinear terms depending on the first order derivative [J].
Du, ZJ ;
Xue, CY ;
Ge, WG .
ARCHIV DER MATHEMATIK, 2005, 84 (04) :341-349