Scalar field dark matter in hybrid approach

被引:12
作者
Friedrich, Pavel [1 ]
Prokopec, Tomislav [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, Spinoza Inst, Buys Ballot Bldg,Princetonpl 5, NL-3584 CC Utrecht, Netherlands
关键词
CURVED SPACE-TIME; COSMOLOGICAL PERTURBATION; WIGNER FUNCTION; QUANTUM; EQUATION; EVOLUTION; PHASE;
D O I
10.1103/PhysRevD.96.083504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated with the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in this work we neglect vector and tensor gravitational perturbations). Inspired by the commonly used Newtonian Vlasov-Poisson system, we firstly identify a suitable combination of equal-time two-point functions that defines the phase-space distribution associated with the scalar field and then derive both a kinetic equation that contains relativistic scalar matter corrections as well as linear gravitational scalar field equations whose sources can be expressed in terms of a momentum integral over the phase-space distribution function. Our treatment generalizes the commonly used classical scalar field formalism, in that it allows for modeling of (dynamically generated) vorticity and perturbations in anisotropic stresses of the scalar field. It also allows for a systematic inclusion of relativistic and higher-order corrections that may be used to distinguish different dark matter scenarios. We also provide initial conditions for the statistical equal-time two-point functions of the matter scalar field in terms of gravitational potentials and the scale factor.
引用
收藏
页数:32
相关论文
共 50 条
[41]   Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter [J].
Urena-Lopez, L. Arturo ;
Gonzalez-Morales, Alma X. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (07)
[42]   Thin tubes of a massless scalar field as a possible source of dark energy [J].
Lelyakov, Alexander ;
Lelyakov, Stepan .
CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (02)
[43]   Cosmological Model with a Scalar Field Assisted Dark Energy Component of the Universe [J].
Bairagi, Mithun .
GRAVITATION & COSMOLOGY, 2025, 31 (02) :210-220
[44]   The Logotropic Dark Fluid as a unification of dark matter and dark energy [J].
Chavanis, Pierre-Henri .
PHYSICS LETTERS B, 2016, 758 :59-66
[45]   Hamiltonian group field theory with multiple scalar matter fields [J].
Gielen, Steffen ;
Polaczek, Axel .
PHYSICAL REVIEW D, 2021, 103 (08)
[46]   New approach in stability analysis: Case study: Tachyon cosmology with nonminimally coupled scalar-field matter [J].
Farajollahi, H. ;
Salehi, A. .
PHYSICAL REVIEW D, 2011, 83 (12)
[47]   Higgs-portal scalar dark matter: Scattering cross section and observable limits [J].
Han, Huayong ;
Zheng, Sibo .
NUCLEAR PHYSICS B, 2017, 914 :248-256
[48]   Scalar field dark energy perturbations and the integrated Sachs-Wolfe effect [J].
Jassal, H. K. .
PHYSICAL REVIEW D, 2012, 86 (04)
[49]   Quintessence scalar field of Kaniadakis holographic dark energy model with statefinder analysis [J].
Sharma, Umesh Kumar ;
Kumar, P. Suresh ;
Pankaj .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023,
[50]   Dynamics of dark energy and scalar field models in non-flat universe [J].
Nawazish, Igra ;
Javed, Wajiha ;
Irshad, Nimra .
PHYSICA SCRIPTA, 2020, 95 (04)