Associative rings whose adjoint semigroup is locally nilpotent

被引:19
作者
Amberg, B
Sysak, Y [1 ]
机构
[1] Univ Mainz, Fachbereich Math, D-55099 Mainz, Germany
[2] Ukrainian Acad Sci, Inst Math, UA-252601 Kiev, Ukraine
关键词
D O I
10.1007/PL00000453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set of all elements of an associative ring R. not necessarily with a unit element, forms a semigroup R-ad under the circle operation r o s = r + s + rs on R. The ring R is called radical if R-ad is a group. It is proved that the semigroup R-ad is nilpotent of class n (in sense of A. Mal'cev or B. H. Neumann and T. Taylor) if and only if the ring R is Lie-nilpotent of class n. This yields a positive answer to a question posed by A. Krasil'nikov and independently considered by D. Riley and V. Tasic. It is also shown that the adjoint group of a radical ring R is locally nilpotent if and only if R is locally Lienilpotent.
引用
收藏
页码:426 / 435
页数:10
相关论文
共 15 条
  • [1] Subgroups of the adjoint group of a radical ring
    Amberg, B
    Dickenschied, O
    Sysak, YP
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (01): : 3 - 15
  • [2] Radical rings with Engel conditions
    Amberg, B
    Sysak, YP
    [J]. JOURNAL OF ALGEBRA, 2000, 231 (01) : 364 - 373
  • [3] THE NILPOTENCY OF THE RADICAL IN A FINITELY GENERATED PI RING
    BRAUN, A
    [J]. JOURNAL OF ALGEBRA, 1984, 89 (02) : 375 - 396
  • [4] THE CENTERS OF A RADICAL RING
    DU, XK
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (02): : 174 - 179
  • [5] HUZURBAZAR MS, 1960, DOKL AKAD NAUK SSSR+, V131, P1268
  • [6] Jacobson N., 1964, AM MATH SOC C PUBL, V37
  • [7] JENNINGS SA, 1955, T ROY SOC CAN, V49, P31
  • [8] On the semigroup nilpotency and the Lie nilpotency of associative algebras
    Krasil'nikov, AN
    [J]. MATHEMATICAL NOTES, 1997, 62 (3-4) : 426 - 433
  • [9] MALCEV A, 1953, UCHEN ZAP IVANOVSK P, V4, P107
  • [10] MALCEV AI, 1963, UCH ZAP IVANOV G FMN, V274, P1