Effect of solid solution treatment on in vitro degradation rate of as-extruded Mg-Zn-Ag alloys

被引:23
作者
Wang, Li-qing [1 ]
Qin, Gao-wu [1 ]
Sun, Shi-neng [1 ]
Ren, Yu-ping [1 ]
Li, Song [1 ]
机构
[1] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Sch Mat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
biodegradable Mg alloy; Mg-Zn-Ag alloy; solution treatment; corrosion resistance; SIMULATED BODY-FLUID; CORROSION BEHAVIOR; MAGNESIUM ALLOYS; TERNARY-SYSTEM; 2ND PHASES; DEGREES-C; MICROSTRUCTURE; BIOCOMPATIBILITY; VIVO;
D O I
10.1016/S1003-6326(17)60288-7
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The degradation behaviors of the as-extruded and solution treated Mg-3Zn-xAg (x=0, 1, 3, mass fraction, %) alloys, as well as as-extruded pure Mg, have been investigated by immersion tests in simulated body fluid (SBF) at 37 degrees C. The as-extruded Mg-Zn(-Ag) alloys contained Mg51Zn20 and Ag17Mg54. While the quasi-single phase Mg-Zn(-Ag) alloys were obtained by solution treatment at 400 degrees C for 8 h. The quasi-single phase Mg-Zn(-Ag) alloys showed lower degradation rate and more homogeneous degradation than corresponding as-extruded Mg alloys. Degradation rate of solid-solution treated Mg-3Zn-1Ag and Mg-3Zn-3Ag was approximately half that of corresponding as-extruded Mg alloy. Moreover, the degradation rate of solid-solution treated Mg-3Zn and Mg-3Zn-1Ag was equivalent to that of as-extruded pure Mg. However, heterogeneous degradation also occurred in quasi-single phase Mg-Zn-Ag alloys, compared to pure Mg. So, preparing complete single-phase Mg alloys could be a potential and feasible way to improve the corrosion resistance.
引用
收藏
页码:2607 / 2612
页数:6
相关论文
共 27 条
[1]   Microstructure and corrosion behavior of Mg-Zn-Ag alloys [J].
Ben-Hamu, G. ;
Eliezer, D. ;
Kaya, A. ;
Na, Y. G. ;
Shin, K. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 435 :579-587
[2]   In vitro corrosion and biocompatibility of binary magnesium alloys [J].
Gu, Xuenan ;
Zheng, Yufeng ;
Cheng, Yan ;
Zhong, Shengping ;
Xi, Tingfei .
BIOMATERIALS, 2009, 30 (04) :484-498
[3]   Corrosion of magnesium alloys: the role of alloying [J].
Gusieva, K. ;
Davies, C. H. J. ;
Scully, J. R. ;
Birbilis, N. .
INTERNATIONAL MATERIALS REVIEWS, 2015, 60 (03) :169-194
[4]   In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model [J].
Han, Pei ;
Cheng, Pengfei ;
Zhang, Shaoxiang ;
Zhao, Changli ;
Ni, Jiahua ;
Zhang, Yuanzhuang ;
Zhong, Wanrun ;
Hou, Peng ;
Zhang, Xiaonong ;
Zheng, Yufeng ;
Chai, Yimin .
BIOMATERIALS, 2015, 64 :57-69
[5]   Evaluating the stress corrosion cracking susceptibility of Mg-Al-Zn alloy in modified-simulated body fluid for orthopaedic implant application [J].
Kannan, M. Bobby ;
Raman, R. K. Singh .
SCRIPTA MATERIALIA, 2008, 59 (02) :175-178
[6]   Structural and corrosion characterization of biodegradable Mg-RE (RE=Gd, Y, Nd) alloys [J].
Kubasek, J. ;
Vojtech, D. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (05) :1215-1225
[7]   Effect of aging time on corrosion behavior of as-forged AZ80 magnesium alloy [J].
Liao, Hui-juan ;
Zhou, Xiao-feng ;
Li, Hui-zhong ;
Deng, Min ;
Liang, Xiao-peng ;
Liu, Ruo-mei .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (12) :3921-3927
[8]   Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid [J].
Liu, Chenglong ;
Xin, Yunchang ;
Tang, Guoyi ;
Chu, Paul K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 456 (1-2) :350-357
[9]  
MAKAR GL, 1993, INT MATER REV, V38, P138, DOI 10.1179/095066093790326320
[10]   Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J].
Orlov, D. ;
Ralston, K. D. ;
Birbilis, N. ;
Estrin, Y. .
ACTA MATERIALIA, 2011, 59 (15) :6176-6186