Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics

被引:96
|
作者
Han, Kai [1 ]
Luo, Nengneng [1 ,2 ,3 ]
Jing, Yang [1 ]
Wang, Xinpeng [1 ,2 ]
Peng, Biaolin [2 ,3 ]
Liu, Laijun [4 ]
Hu, Changzheng [4 ]
Zhou, Huanfu [4 ]
Wei, Yuezhou [1 ,2 ]
Chen, Xiyong [1 ,2 ]
Feng, Qin [1 ]
机构
[1] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
[2] Guangxi Univ, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China
[3] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[4] Guilin Univ Technol, Coll Mat Sci & Engn, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
AgNbO3; Antiferroelectric; Energy storage; Tolerance factor; ANTI-FERROELECTRIC CERAMICS; GRAIN-SIZE; ELECTRICAL-PROPERTIES; PHASE-TRANSITION; DENSITY; MICROSTRUCTURE;
D O I
10.1016/j.ceramint.2018.12.014
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The AgNbO3 antiferroelectric (AFE) ceramics have attracted increasing attention for their high energy storage performance and environmentally friendly characters. In this work, Ag1-2xBaxNbO3 ceramics were successfully prepared by the conventional solid-state reaction method. The effect of Ba-modification on phase structure, microstructure, and electric properties was systematically investigated. The introduction of Ba2+ ion led to complex cell parameter evolution and significant refinement of grain size. Room temperature dielectric permittivity increased obviously from similar to 260 for the pure AgNbO3 counterpart to similar to 350 for those after adding a small amount of Ba element. Slim P-E hysteresis loops with improved AFE phase were achieved after Ba modification, due to the decrease of tolerance factor. A high recoverable energy density up to 2.3 J/cm(3) with energy efficiency of 46% can be obtained for the composition of Ag0.96Ba0.02NbO3, in correlation with the enhanced AFE stability, reduced P-r, increased P-m and decreased Delta E. Moreover, the Ag(0.96)Ba(0.02)NbO(3 )ceramics also exhibited excellent temperature stability in both energy density and efficiency with small variation of < 5% over 20-120 degrees C. The results suggest that the electric properties of AgNbO3 system can be largely tuned after Ba modification, making it a promising candidate for energy storage applications.
引用
收藏
页码:5559 / 5565
页数:7
相关论文
共 50 条
  • [1] Structure and energy storage performance of lanthanide elements doped AgNbO3 lead-free antiferroelectric ceramics
    Ma, Li
    Chen, Zhenpei
    Che, Zhiyi
    Feng, Qin
    Cen, Zhenyong
    Toyohisa, Fujita
    Wei, Yuezhou
    Hu, Changzheng
    Liu, Laijun
    Luo, Nengneng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (05) : 2204 - 2211
  • [2] Antiferroelectric-ferroelectric phase transition in lead-free AgNbO3 ceramics for energy storage applications
    Gao, Jing
    Zhao, Lei
    Liu, Qing
    Wang, Xuping
    Zhang, Shujun
    Li, Jing-Feng
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (12) : 5443 - 5450
  • [3] High energy-storage performance of lead-free AgNbO3 antiferroelectric ceramics fabricated via a facile approach
    Wang, Xiucai
    Cai, Weiqiang
    Xiao, Ze
    Yang, Guangguang
    Yu, Xinmei
    Chen, Jianwen
    Chen, Dongchu
    Zhang, Qingfeng
    Chen, Min
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (10) : 5163 - 5169
  • [4] Effects of sintering method on the structural, dielectric and energy storage properties of AgNbO3 lead-free antiferroelectric ceramics
    Li, Tianyu
    Cao, Wenjun
    Chen, Pengfei
    Wang, Jinsong
    Wang, Chunchang
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (24) : 13499 - 13508
  • [5] Lead-free antiferroelectric AgNbO3: Phase transitions and structure engineering for dielectric energy storage applications
    Gao, Jing
    Li, Qian
    Zhang, Shujun
    Li, Jing-Feng
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (07)
  • [6] Effects of sintering method on the structural, dielectric and energy storage properties of AgNbO3 lead-free antiferroelectric ceramics
    Tianyu Li
    Wenjun Cao
    Pengfei Chen
    Jinsong Wang
    Chunchang Wang
    Journal of Materials Science, 2021, 56 : 13499 - 13508
  • [7] Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications
    Yang, Dong
    Gao, Jing
    Shu, Liang
    Liu, Yi-Xuan
    Yu, Jingru
    Zhang, Yuanyuan
    Wang, Xuping
    Zhang, Bo-Ping
    Li, Jing-Feng
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (45) : 23724 - 23737
  • [8] Achieving excellent energy storage performance with thermal stability in lead-free AgNbO3 ceramics
    Chao, Wenna
    Du, Juan
    Li, Peng
    Li, Wei
    Yang, Tongqing
    DALTON TRANSACTIONS, 2024, 53 (07) : 2949 - 2956
  • [9] Significantly enhanced energy storage properties of Nd3+doped AgNbO3 lead-free antiferroelectric ceramics
    Shi, Peng
    Wang, Xiangjian
    Lou, Xiaojie
    Zhou, Chao
    Liu, Qida
    He, Liqiang
    Yang, Sen
    Zhang, Xiaoxiao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 877
  • [10] Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density
    Luo, Nengneng
    Han, Kai
    Zhuo, Fangping
    Xu, Chao
    Zhang, Guangzu
    Liu, Laijun
    Chen, Xiyong
    Hu, Changzheng
    Zhou, Huanfu
    Wei, Yuezhou
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 14118 - 14128