Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes

被引:35
作者
Chen, Hao [1 ]
Yu, Liang [1 ]
Zhang, Jun Ming [1 ]
Liu, Chuan Pu [1 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
NiMoO4; MnO2; Titanium mesh; Supercapacitor electrodes; HIGH-PERFORMANCE SUPERCAPACITORS; ELECTROCHEMICAL PERFORMANCE; NANOWIRE ARRAYS; NI FOAM; GRAPHENE; NANOFLAKES; DENSITY;
D O I
10.1016/j.ceramint.2016.08.094
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hierarchical NiMoO4@MnO2 nanosheet arrays supported on titanium mesh are synthesized by cost effective hydrothermal methods for binder-free electrode. High specific area of porous MnO(2)nanosheets.and exceptionally high pseudocapacitive behavior of NiMoO(4)nanosheets lead to a specific capacitance of 976 F g(-1) at a current density of 1 A g(-1) with pleasurable rate characteristic in three electrode configuration. The excellent electrochemical performances of the integrated electrode can be ascribed to the unique core-shell nanostructure and synergic interaction. It is believed that the hierarchical NiMoO4@MnO2 nanosheet arrays supported on titanium mesh can provide great prospect for energy storage applications. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:18058 / 18063
页数:6
相关论文
共 35 条
[1]  
[Anonymous], SEL TOP SIGNAL PROCE
[2]   Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
CHEMICAL COMMUNICATIONS, 2012, 48 (10) :1425-1427
[3]   Comparison of the Electrochemical Performance of NiMoO4 Nanorods and Hierarchical Nanospheres for Supercapacitor Applications [J].
Cai, Daoping ;
Wang, Dandan ;
Liu, Bin ;
Wang, Yanrong ;
Liu, Yuan ;
Wang, Lingling ;
Li, Han ;
Huang, Hui ;
Li, Qiuhong ;
Wang, Taihong .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (24) :12905-12910
[4]   Hierarchical copper/nickel-based manganese dioxide core-shell nanostructure for supercapacitor electrodes [J].
Chen, Hao ;
Qi, Xue Qiang ;
Kuang, Min ;
Dong, Fan ;
Zhang, Yu Xin .
ELECTROCHIMICA ACTA, 2016, 212 :671-677
[5]   Construction of unique cupric oxide-manganese dioxide core-shell arrays on a copper grid for high-performance supercapacitors [J].
Chen, Hao ;
Zhou, Ming ;
Wang, Tian ;
Li, Fei ;
Zhang, Yu Xin .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (28) :10786-10793
[6]   Rational synthesis of hybrid NiCo2S4@MnO2 heterostructures for supercapacitor electrodes [J].
Chen, Hao ;
Liu, Xiao Li ;
Zhang, Jun Ming ;
Dong, Fan ;
Zhang, Yu Xin .
CERAMICS INTERNATIONAL, 2016, 42 (07) :8909-8914
[7]   Inkjet Printing of Single-Walled Carbon Nanotube/RuO2 Nanowire Supercapacitors on Cloth Fabrics and Flexible Substrates [J].
Chen, Pochiang ;
Chen, Haitian ;
Qiu, Jing ;
Zhou, Chongwu .
NANO RESEARCH, 2010, 3 (08) :594-603
[8]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[9]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[10]   Improving the Volumetric Energy Density of Supercapacitors [J].
Goubard-Bretesche, Nicolas ;
Crosnier, Olivier ;
Favier, Frederic ;
Brousse, Thierry .
ELECTROCHIMICA ACTA, 2016, 206 :458-463