La1-X(Ce, Sr)XNiO3 perovskite-type oxides as catalyst precursors to syngas production through tri-reforming of methane

被引:15
作者
Bertoldi, Juliana [1 ,2 ]
Roseno, Karina Tamiao de Campos [2 ]
Schmal, Martin [2 ,3 ]
Lage, Vitor Duarte [3 ]
Lenzi, Giane Goncalves [4 ]
Brackmann, Rodrigo [1 ]
机构
[1] Univ Tecnol Fed Parana UTFPR, Dept Quim, Via Conhecimento,Km 01, BR-85503390 Pato Branco, PR, Brazil
[2] Univ Sao Paulo, Polytech Sch, Dept Chem Engn, Ave Prof Lineu Prestes 580,Bl 18, BR-05508000 Sao Paulo, SP, Brazil
[3] Univ Fed Rio de Janeiro, Chem Engn Program COPPE, Ave Horacio Macedo 2030,CP 68502, BR-21941914 Rio De Janeiro, RJ, Brazil
[4] Univ Tecnol Fed Parana UTFPR, Dept Engn Quim, Rua Doutor Washington Subtil Chueire 330, BR-84017220 Ponta Grossa, PR, Brazil
关键词
Perovskite-type oxides; Tri-reforming of methane; Syngas production; Hydrogen; SYNTHESIS GAS-PRODUCTION; CARBON-DIOXIDE; NATURAL-GAS; THERMAL-DECOMPOSITION; HYDROGEN-PRODUCTION; SURFACE-PROPERTIES; PARTIAL OXIDATION; FISCHER-TROPSCH; COMBINED STEAM; MIXED OXIDES;
D O I
10.1016/j.ijhydene.2022.07.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LaNiO3 (LN), La0.95Ce0.05NiO3 (LCN) and La0.95Sr0.05NiO3 (LSN) perovskites were synthesized by the polymeric precursor method to act as catalyst precursors for the Tri-reforming of methane (TRM). The majority phase determined for the LCN perovskite was LaNiO3, whereas, for LN and LSN, it was La2NiO4. It was not possible to determine segregated strontium phases for LSN, but LCN presented a small amount of CeO2. All the catalysts presented similar methane conversions (around 75%), however differed in CO2 conversion. LCN was the sample with the highest CO2 conversion (32%), while the values recorded for the LN and LSN samples were 21.9 and 17.1%, respectively. The partial substitution of La3+ by Ce4+ leads to a higher CO2 conversion due to the redox properties of cerium, which promotes CO2 disproportion at the oxygen vacancies generated by cerium, providing more oxygen species that oxidize the coke at the surface. The most active sample for CO2 con-version (LCN) was also the least selective for hydrogen, generating a synthesis gas with an H-2/CO ratio of 1.2, while the less active LN and LSN samples were more selective for hydrogen (H-2/CO = 1.5-1.6). Thus, it is possible to generate synthesis gas suitable for different applications depending on the metal incorporated into the LaNiO3 perovskite. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:31279 / 31294
页数:16
相关论文
共 91 条
[1]   Natural gas to synthesis gas - Catalysts and catalytic processes [J].
Aasberg-Petersen, K. ;
Dybkjaer, I. ;
Ovesen, C. V. ;
Schjodt, N. C. ;
Sehested, J. ;
Thomsen, S. G. .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2011, 3 (02) :423-459
[2]   O2, H2O or CO2 side-feeding policy in methane tri-reforming reactor: The role of influencing parameters [J].
Alipour-Dehkordi, Afshar ;
Khademi, Mohammad Hasan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (30) :15239-15253
[3]   Use of a micro-porous membrane multi-tubular fixed-bed reactor for tri-reforming of methane to syngas: CO2, H2O or O2 side-feeding [J].
Alipour-Dehkordi, Afshar ;
Khademi, Mohammad Hasan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (60) :32066-32079
[4]   A Review: Fundamental Aspects of Silicate Mesoporous Materials [J].
ALOthman, Zeid A. .
MATERIALS, 2012, 5 (12) :2874-2902
[5]   Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas [J].
Amin, Nor Aishah Saidina ;
Yaw, Tung Chun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (12) :1789-1798
[6]   Pulse study of CO2 reforming of methane over LaNiO3 [J].
Batiot-Dupeyrat, C ;
Valderrama, G ;
Meneses, A ;
Martinez, F ;
Barrault, J ;
Tatibouët, JM .
APPLIED CATALYSIS A-GENERAL, 2003, 248 (1-2) :143-151
[7]   In Situ-Determined Catalytically Active State of LaNiO3 in Methane Dry Reforming [J].
Bonmassar, Nicolas ;
Bekheet, Maged F. ;
Schlicker, Lukas ;
Gili, Albert ;
Gurlo, Aleksander ;
Doran, Andrew ;
Gao, Yuanxu ;
Heggen, Marc ;
Bernardi, Johannes ;
Klotzer, Bernhard ;
Penner, Simon .
ACS CATALYSIS, 2020, 10 (02) :1102-1112
[8]   Specific surface area and pore size distribution in gas shales of Raniganj Basin, India [J].
Boruah, Annapurna ;
Rasheed, Abdul ;
Mendhe, Vinod Atmaram ;
Ganapathi, S. .
JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2019, 9 (02) :1041-1050
[9]   Synthesis and Characterization of Fe-Doped CeO2 for Application in the NO Selective Catalytic Reduction by CO [J].
Brackmann, Rodrigo ;
Toniolo, Fabio Souza ;
Schmal, Martin .
TOPICS IN CATALYSIS, 2016, 59 (19-20) :1772-1786
[10]   Mesoporosity as a new parameter for understanding tension stress generation in trees [J].
Chang, Shan-Shan ;
Clair, Bruno ;
Ruelle, Julien ;
Beauchene, Jacques ;
Di Renzo, Francesco ;
Quignard, Francoise ;
Zhao, Guang-Jie ;
Yamamoto, Hiroyuki ;
Gril, Joseph .
JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (11) :3023-3030