Functional equations on semigroups with an endomorphism

被引:10
作者
Fadli, B. [1 ]
Kabbaj, S. [1 ]
Sabour, Kh [1 ]
Zeglami, D. [2 ]
机构
[1] Ibn Tofail Univ, Dept Math, Fac Sci, BP 14000, Kenitra, Morocco
[2] Moulay Ismail Univ, Dept Math, ENSAM, BP 15290, Al Mansur, Meknes, Morocco
关键词
functional equation; d'Alembert; Jensen; multiplicative function; additive map; semigroup; endomorphism;
D O I
10.1007/s10474-016-0635-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a semigroup, let H be an abelian group which is 2-torsion free, and let be an endomorphism. We determine the solutions of the functional equation in terms of multiplicative functions on S, and we show that any solution , when is surjective, of the functional equationhas the form , where is an additive map such that , and where is a constant. The endomorphism need not be involutive.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 20 条
[1]  
Aczel J., 1989, ENCY MATH APPL, V31
[2]  
[Anonymous], 2016, ACTA MATH HUNGARICA, V150
[3]  
Cauchy A. L., 1821, COURS ANAL ECOLE P 1
[4]   A GENERALIZATION OF THE SYMMETRIZED MULTIPLICATIVE CAUCHY EQUATION [J].
Chahbi, A. ;
Fadli, B. ;
Kabbaj, S. .
ACTA MATHEMATICA HUNGARICA, 2016, 149 (01) :170-176
[5]   d'Alembert's other functional equation on monoids with an involution [J].
Ebanks, Bruce ;
Stetkaer, Henrik .
AEQUATIONES MATHEMATICAE, 2015, 89 (01) :187-206
[6]  
Fadli B., DEMON STR M IN PRESS
[7]   A joint generalization of Van Vleck's and Kannappan's equations on groups [J].
Fadli, Brahim ;
Zeglami, Driss ;
Kabbaj, Samir .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2015, 6 (03) :179-188
[8]   A variant of Wilson's functional equation [J].
Fadli, Brahim ;
Zeglami, Driss ;
Kabbaj, Samir .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4) :415-427
[9]  
Kabbaj S., 2016, WILSONS FUNCTI UNPUB
[10]  
Kannappan P, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-89492-8_1