Engineering Hierarchical Architecture of Metal-Organic Frameworks for Highly Efficient Overall CO2 Photoreduction

被引:66
作者
Huang, Hai-Bo [1 ,2 ]
Fang, Zhi-Bin [1 ]
Wang, Rui [2 ]
Li, Lan [1 ,2 ]
Khanpour, Mojtaba [1 ]
Liu, Tian-Fu [1 ,2 ,3 ]
Cao, Rong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Fujian Sci Technol Innovat Lab Optoelect Informat, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
CO; (2) reduction; core-shell structure; heterojunctions; metal-organic frameworks; photocatalysis; REDUCTION; WATER; CONVERSION; PHOTOCATALYSTS; H-2;
D O I
10.1002/smll.202200407
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Previous studies on syntheses of metal-organic frameworks (MOFs) for photocatalytic CO2 reduction are mainly focused on the exquisite control over the net topology and the functionality of metal clusters/organic building blocks. This contribution demonstrates that the rational design of MOF-based photocatalyst can be further extended to the hierarchical structure at micrometer scales well beyond the conventional MOF design at the molecular level. By taking advantage of the disparity of two selective MOFs in nucleation kinetics, a hierarchical core-shell MOF@MOF structure is successfully constructed through a simple one-pot synthesis. Besides inheriting the high porosity, crystallinity, and robustness of parent MOFs, the obtained heterojunction exhibits extended photoresponse, optimized band alignment with large overpotential, and greatly enhanced photogenerated charge separation, which would be hardly realized by the merely molecular-level assembly. As a result, the challenging overall CO2 photoreduction is achieved, which generates a record high HCOOH production (146.0 mu mol/g/h) without using any sacrificial reagents. Moreover, the core-shell structure exhibits a more effective use of photogenerated electrons than the individual MOFs. This work shows that harnessing the hierarchical architecture of MOFs present a new and effective alternative to tuning the photocatalytic performance at a mesoscopic level.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Rational Design and Growth of MOF-on-MOF Heterostructures [J].
Chai, Lulu ;
Pan, Junqing ;
Hu, Yue ;
Qian, Jinjie ;
Hong, Maochun .
SMALL, 2021, 17 (36)
[2]   Energy Band Alignment and Redox-Active Sites in Metalloporphyrin-Spaced Metal-Catechol Frameworks for Enhanced CO2 Photoreduction [J].
Chen, Er-Xia ;
Qiu, Mei ;
Zhang, Yong-Fan ;
He, Liang ;
Sun, Ya-Yong ;
Zheng, Hui-Li ;
Wu, Xin ;
Zhang, Jian ;
Lin, Qipu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (01)
[3]   Amine-Functionalized Graphene/CdS Composite for Photocatalytic Reduction of CO2 [J].
Cho, Kyeong Min ;
Kim, Kyoung Hwan ;
Park, Kangho ;
Kim, Chansol ;
Kim, Sungtak ;
Al-Saggaf, Ahmed ;
Gereige, Issam ;
Jung, Hee-Tae .
ACS CATALYSIS, 2017, 7 (10) :7064-7069
[4]   Catalysis and photocatalysis by metal organic frameworks [J].
Dhakshinamoorthy, Amarajothi ;
Li, Zhaohui ;
Garcia, Hermenegildo .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (22) :8134-8172
[5]   The role of reticular chemistry in the design of CO2 reduction catalysts [J].
Diercks, Christian S. ;
Liu, Yuzhong ;
Cordova, Kyle E. ;
Yaghi, Omar M. .
NATURE MATERIALS, 2018, 17 (04) :301-307
[6]   Stable Heterometallic Cluster-Based Organic Framework Catalysts for Artificial Photosynthesis [J].
Dong, Long-Zhang ;
Zhang, Lei ;
Liu, Jiang ;
Huang, Qing ;
Lu, Meng ;
Ji, Wen-Xin ;
Lan, Ya-Qian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (07) :2659-2663
[7]   Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO2 Photoreduction via Rational Design of Coordination Spheres on Metal-Organic Frameworks [J].
Fang, Zhi-Bin ;
Liu, Ting-Ting ;
Liu, Junxue ;
Jin, Shengye ;
Wu, Xin-Ping ;
Gong, Xue-Qing ;
Wang, Kecheng ;
Yin, Qi ;
Liu, Tian-Fu ;
Cao, Rong ;
Zhou, Hong-Cai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (28) :12515-12523
[8]   A Water-Stable Porphyrin-Based Metal-Organic Framework Active for Visible-Light Photocatalysis [J].
Fateeva, Alexandra ;
Chater, Philip A. ;
Ireland, Christopher P. ;
Tahir, Asif A. ;
Khimyak, Yaroslav Z. ;
Wiper, Paul V. ;
Darwent, James R. ;
Rosseinsky, Matthew J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (30) :7440-7444
[9]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[10]   Metal-Free 2D/2D Heterojunction of Graphitic Carbon Nitride/Graphdiyne for Improving the Hole Mobility of Graphitic Carbon Nitride [J].
Han, Ying-Ying ;
Lu, Xiu-Li ;
Tang, Shang-Feng ;
Yin, Xue-Peng ;
Wei, Zhen-Wei ;
Lu, Tong-Bu .
ADVANCED ENERGY MATERIALS, 2018, 8 (16)