Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%

被引:113
作者
Syu, Hong-Jhang [1 ]
Shiu, Shu-Chia [1 ]
Lin, Ching-Fuh [1 ,2 ,3 ]
机构
[1] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
关键词
Silicon nanowire; PEDOT:PSS; Hybrid solar cell; LABEL-FREE; ARRAYS; FABRICATION; NANOWIRES; SURFACE;
D O I
10.1016/j.solmat.2011.11.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, we investigate in great detail the silicon nanowire (SiNW)/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hybrid solar cells (SCs). Because of the light-trapping effect, SiNW/PEDOT:PSS SCs absorb more light than planar Si/PEDOT:PSS SCs. Also, the light absorption increases with the length of the SiNWs. However, the SiNW's length is not the only factor that influences the SCs. Thus the SiNW/PEDOT:PSS SCs with the shortest wire length of 0.37 mu m have the best performance in terms of the highest power conversion efficiency of 8.40%, the largest short circuit current density of 24.24 mA cm(-2), and open circuit voltage of 0.532 V, compared with the SCs of other wire lengths. The reasons are two-fold. First, long SiNWs tend to aggregate at the top portion, making the infiltration of PEDOT:PSS difficult, so the coverage of PEDOT:PSS on the SiNWs is not complete. Second, the increase of SiNW length greatly reduces the minority-carrier lifetime. Our investigation will help develop SiNW SCs with improved performance. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 25 条
[1]   Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature [J].
Chen, Chia-Yun ;
Wu, Chi-Sheng ;
Chou, Chia-Jen ;
Yen, Ta-Jen .
ADVANCED MATERIALS, 2008, 20 (20) :3811-+
[2]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[3]   Silicon nanowire arrays for label-free detection of DNA [J].
Gao, Zhiqiang ;
Agarwal, Ajay ;
Trigg, Alastair D. ;
Singh, Navab ;
Fang, Cheng ;
Tung, Chih-Hang ;
Fan, Yi ;
Buddharaju, Kavitha D. ;
Kong, Jinming .
ANALYTICAL CHEMISTRY, 2007, 79 (09) :3291-3297
[4]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087
[5]   Silicon nanowire radial p-n junction solar cells [J].
Garnett, Erik C. ;
Yang, Peidong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (29) :9224-+
[6]   Silicon vertically integrated nanowire field effect transistors [J].
Goldberger, Josh ;
Hochbaum, Allon I. ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2006, 6 (05) :973-977
[7]  
Green M.A., 1982, Solar Cells: Operating Principles, Technology, and System Applications
[8]   Analysis of optical absorption in silicon nanowire Arrays for photovoltaic applications [J].
Hu, Lu ;
Chen, Gang .
NANO LETTERS, 2007, 7 (11) :3249-3252
[9]   Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures [J].
Huang, Yi-Fan ;
Chattopadhyay, Surojit ;
Jen, Yi-Jun ;
Peng, Cheng-Yu ;
Liu, Tze-An ;
Hsu, Yu-Kuei ;
Pan, Ci-Ling ;
Lo, Hung-Chun ;
Hsu, Chih-Hsun ;
Chang, Yuan-Huei ;
Lee, Chih-Shan ;
Chen, Kuei-Hsien ;
Chen, Li-Chyong .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :770-774
[10]   Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells -: art. no. 114302 [J].
Kayes, BM ;
Atwater, HA ;
Lewis, NS .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)