Mathematical Model of Blasting Schemes Management in Mining Operations in Presence of Random Disturbances

被引:0
作者
Kazakova, E. I. [1 ]
Medvedev, A. N. [2 ,3 ]
Kolomytseva, A. O. [1 ]
Demina, M. I. [2 ]
机构
[1] Donetsk Natl Tech Univ, Artem 58, UA-83001 Donetsk, Ukraine
[2] Ural Fed Univ, Mira 19, Ekaterinburg 620002, Russia
[3] Inst Ind Ecol UB RAS, Sophy Kovalevskoy 20, Ekaterinburg 620990, Russia
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017) | 2017年 / 1906卷
关键词
Mathematical model; management; blasting schemes; stochastic differential equation; optimal control;
D O I
10.1063/1.5012336
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper presents a mathematical model of blasting schemes management in presence of random disturbances. Based on the lemmas and theorems proved, a control functional is formulated, which is stable. A universal classification of blasting schemes is developed. The main classification attributes are suggested: the orientation in plan the charging wells rows relatively the block of rocks; the presence of cuts in the blasting schemes; the separation of the wells series onto elements; the sequence of the blasting. The periodic regularity of transition from one Short-delayed scheme of blasting to another is proved.
引用
收藏
页数:5
相关论文
共 8 条
  • [1] [Anonymous], 2011, P 2 INT FLAC DEM S M
  • [2] Modeling of the Competition Life Cycle Using the Software Complex of Cellular Automata PyCAlab
    Berg, D. B.
    Beklemishev, K. A.
    Medvedev, A. N.
    Medvedeva, M. A.
    [J]. 41ST INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'15), 2015, 1690
  • [3] Chernikov A. K., 1994, THEORETICAL BASES GE
  • [4] Chezary L., 1964, ASYMPTOTIC BEHAV STA
  • [5] Gospodarikov A. P., 1999, METHOD SOLVING NONLI
  • [6] Levakov A. A, 2009, STOCHASTIC DIFFERENT
  • [7] Medvedeva M, 2015, INT MULTI SCI GEOCO, P49
  • [8] Synchkovsky V. N., 2007, TECHNOLOGY OPEN CAST