Robust data representation using locally linear embedding guided PCA

被引:19
作者
Jiang, Bo [1 ]
Ding, Chris [1 ,2 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China
[2] Univ Texas Arlington, CSE Dept, Arlington, TX 76019 USA
基金
中国国家自然科学基金;
关键词
Principal component analysis; LLE; Semi-supervised learning; Dimension reduction; NONLINEAR DIMENSIONALITY REDUCTION;
D O I
10.1016/j.neucom.2017.08.053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Locally Linear Embedding (LLE) is widely used for embedding data on a nonlinear manifold. It aims to preserve the local neighborhood structure on the data manifold. Our work begins with a new observation that LLE has a natural robustness property. Motivated by this observation, we propose to integrate LLE and PCA into a LLE guided PCA model (LLE-PCA) that incorporates both global structure and local neighborhood structure simultaneously while performs robustly to outliers. LLE-PCA has a compact closed-form solution and can be efficiently computed. Extensive experiments on five datasets show promising results on data reconstruction and improvement on data clustering and semi-supervised learning tasks. (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:523 / 532
页数:10
相关论文
共 32 条
[1]  
[Anonymous], 2004, ICML 04, DOI DOI 10.1145/1015330.1015417
[2]  
[Anonymous], 2010, P ICML
[3]  
[Anonymous], 2005, P INT C COMP VIS
[4]  
[Anonymous], 2002, Principal Component Analysis
[5]  
[Anonymous], 1973, Pattern Classification and Scene Analysis
[6]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[7]   Non-negative Matrix Factorization on Manifold [J].
Cai, Deng ;
He, Xiaofei ;
Wu, Xiaoyun ;
Han, Jiawei .
ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, :63-+
[8]  
Ding C, 2006, P 23 INT C MACH LEAR, P281, DOI DOI 10.1145/1143844.1143880
[9]  
He X., 2003, P NEUR INF PROC SYST, P126
[10]  
Hou C., 2009, OPT ENG, V48, P635