Stopping of functionals with discontinuity at the boundary of an open set

被引:7
作者
Palczewski, Jan [1 ,2 ]
Stettner, Lukasz [3 ,4 ]
机构
[1] Univ Warsaw, Fac Math, PL-02097 Warsaw, Poland
[2] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[3] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[4] Acad Finance, Warsaw, Poland
关键词
Optimal stopping; Feller-Markov process; Discontinuous functional; Penalty method; TIME;
D O I
10.1016/j.spa.2011.05.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We explore properties of the value function and existence of optimal stopping times for functionals with discontinuities related to the boundary of an open (possibly unbounded) set O. The stopping horizon is either random, equal to the first exit from the set O, or fixed (finite or infinite). The payoff function is continuous with a possible jump at the boundary of O. Using a generalization of the penalty method, we derive a numerical algorithm for approximation of the value function for general Feller-Markov processes and show existence of optimal or c-optimal stopping times. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2361 / 2392
页数:32
相关论文
共 22 条
  • [1] [Anonymous], 1965, FIZMATGIZ MOSKOW
  • [2] [Anonymous], Lecture Notes in Math.
  • [3] Bassan B., 2002, STOCHASTICS STOCHAST, V74, P633, DOI 10.1080/1045112021000015331
  • [4] Bassan B., 2002, STOCHASTICS STOCHAST, V72, P55
  • [5] Bensoussan A., 1978, Application des Inequalities Variationnelles en Control Stochastique
  • [6] OPTIMAL STOPPING TIME, GENERAL THEORY OF PROCESSES AND MARKOV-PROCESSES
    BISMUT, JM
    SKALLI, B
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (04): : 301 - 313
  • [7] BLUMENTHAL R. M., 1968, Markov Processes and Potential Theory
  • [8] ELKAROUI N, 1982, LECT NOTES CONTROL I, V42, P106
  • [9] FAKEEV AG, 1971, THEORET PROBAB APPL, V16, P708
  • [10] Fleming W., 2006, Controlled Markov Processes and Viscosity Solutions