The Hilbert-Schmidt norm as a measure of entanglement in spin-1/2 Heisenberg chain: generalized Bell inequality and distance between states

被引:1
作者
Silva, Saulo L. L. [1 ]
Franco, Daniel H. T. [2 ]
机构
[1] Ctr Fed Educ Tecnol Minas Gerais, BR-37250000 Nepomuceno, MG, Brazil
[2] Univ Fed Vicosa, Dept Fis, Grp Fis Matemat & Teoria Quant Campos, BR-36570900 Vicosa, MG, Brazil
关键词
Generalized Bell inequality; Distance between states; Entanglement; QUANTUM ENTANGLEMENT;
D O I
10.1007/s40509-021-00266-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement calculations have received renewed interest with the advances observed in the field of quantum computing. Alternative methods to calculate entanglement that can be applied to broader classes of problems have become increasingly necessary. In this letter, we show that the measure of entanglement using the generalized Bell inequality and the distance between states coincide when we use the Hilbert-Schmidt norm. Our conclusions apply to the spin-1/2 Heisenberg chains with the interaction between the first neighbours.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 24 条
  • [1] EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS
    ASPECT, A
    DALIBARD, J
    ROGER, G
    [J]. PHYSICAL REVIEW LETTERS, 1982, 49 (25) : 1804 - 1807
  • [2] Generalized concurrence and quantum phase transition in spin-1 Heisenberg model
    Bahmani, H.
    Najarbashi, G.
    Tavana, A.
    [J]. PHYSICA SCRIPTA, 2020, 95 (05)
  • [3] The dawn of quantum biology
    Ball, Philip
    [J]. NATURE, 2011, 474 (7351) : 272 - 274
  • [4] Measuring distances in Hilbert space by many-particle interference
    Bartkiewicz, Karol
    Travnicek, Vojtech
    Lemr, Karel
    [J]. PHYSICAL REVIEW A, 2019, 99 (03)
  • [5] Geometric picture of entanglement and Bell inequalities
    Bertlmann, RA
    Narnhofer, H
    Thirring, W
    [J]. PHYSICAL REVIEW A, 2002, 66 (03): : 9
  • [6] Spin Entanglement Witness for Quantum Gravity
    Bose, Sougato
    Mazumdar, Anupam
    Morley, Gavin W.
    Ulbricht, Hendrik
    Toros, Marko
    Paternostro, Mauro
    Geraci, Andrew A.
    Barker, Peter F.
    Kim, M. S.
    Milburn, Gerard
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (24)
  • [7] A tensor product matrix approximation problem in quantum physics
    Dahl, Geir
    Leinaas, Jon Magne
    Myrheim, Jan
    Ovrum, Eirik
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 711 - 725
  • [8] Necessary and Sufficient Condition for Nonzero Quantum Discord
    Dakic, Borivoje
    Vedral, Vlatko
    Brukner, Caslav
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (19)
  • [9] HILBERT-SCHMIDT MEASURE OF PAIRWISE QUANTUM DISCORD FOR THREE-QUBIT X STATES
    Daoud, M.
    Laamara, R. Ahl
    Seddik, S.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2015, 76 (02) : 207 - 230
  • [10] Magnetic shielding of quantum entanglement states
    Del Cima, O. M.
    Franco, D. H. T.
    Silva, M. M.
    [J]. QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2019, 6 (02) : 141 - 150