Fourier analysis of 2-point Hermite interpolatory subdivision schemes

被引:1
作者
Dubuc, S
Lemire, D
Merrien, JL
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Ondelette Inc, Montreal, PQ H2K 2P8, Canada
[3] INSA Rennes, F-35043 Rennes, France
关键词
Hermite interpolation; curve fitting; subdivision; Fourier transform; distributions; convergence of infinite products; products of matrices;
D O I
10.1007/BF02511225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two subdivision schemes with Hermite data on Z are studied These schemes use 2 or 7 parameters respectively depending on whether Hermite data involve only first derivatives or include second derivatives, For a large region in the parameter space, the schemes are convergent in the space of Schwartz distributions. The Fourier transform of any interpolating function can be computed through products of matrices of order 2 or 3. The Fourier transform is related to a specific system of functional equations whose analytic solution is unique except for a multiplicative constant. The main arguments for these results come from Paley-Wiener-Schwartz theorem on the characterization of the Fourier transforms of distributions with compact support and a theorem of Artzrouni about convergent products of matrices.
引用
收藏
页码:537 / 552
页数:16
相关论文
共 13 条
[1]   ON THE CONVERGENCE OF INFINITE PRODUCTS OF MATRICES [J].
ARTZROUNI, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 74 :11-21
[2]   SETS OF MATRICES ALL INFINITE PRODUCTS OF WHICH CONVERGE [J].
DAUBECHIES, I ;
LAGARIAS, JC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 161 :227-263
[3]   MULTIDIMENSIONAL ITERATIVE INTERPOLATION [J].
DESLAURIERS, G ;
DUBOIS, J ;
DUBUC, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (02) :297-312
[4]  
DESLAURIERS G, 1987, ANN SC MATH QUEBEC, V11, P25
[5]  
Dyn N., 1995, Series in Approximations and Decompositions, V6, P117
[6]  
Dyn N., 1999, SPLINE FUNCTIONS THE, P105
[7]   Multi-resolution analysis of multiplicity d: Applications to dyadic interpolation [J].
Herve, Loic .
Applied and Computational Harmonic Analysis, 1994, 1 (04) :299-315
[8]   Using the discrete Fourier transform to analyze the convergence of subdivision schemes [J].
Kobbelt, L .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (01) :68-91
[9]  
Kuczma M., 1968, FUNCTIONAL EQUATIONS
[10]  
Merrien J. L., 1992, Numerical Algorithms, V2, P187, DOI 10.1007/BF02145385