Hot-Carrier Extraction in Nanowire-Nanoantenna Photovoltaic Devices

被引:30
作者
Chen, I-Ju [1 ]
Limpert, Steven [1 ]
Metaferia, Wondwosen [1 ,2 ]
Thelander, Claes [1 ]
Samuelson, Lars [1 ]
Capasso, Federico [3 ]
Burke, Adam M. [1 ]
Linke, Heiner [1 ]
机构
[1] Lund Univ, NanoLund & Solid State Phys, SE-22100 Lund, Sweden
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Harvard Univ, Harvard A John Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
欧洲研究理事会; 芬兰科学院; 瑞典研究理事会;
关键词
Hot electron; plasmonic; III-V nanowire heterostructure; photothermionic; internal photoemission; solar energy conversion; INP; ELECTRONS; LIMIT; INAS; PHOTODETECTION; ABSORPTION; EFFICIENCY; EMISSION; DYNAMICS; WURTZITE;
D O I
10.1021/acs.nanolett.9b04873
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanowires bring new possibilities to the field of hot-carrier photovoltaics by providing flexibility in combining materials for band engineering and using nanophotonic effects to control light absorption. Previously, an open-circuit voltage beyond the Shockley-Queisser limit was demonstrated in hot-carrier devices based on InAs-InP-InAs nanowire heterostructures. However, in these first experiments, the location of light absorption, and therefore the precise mechanism of hot-carrier extraction, was uncontrolled. In this Letter, we combine plasmonic nanoantennas with InAs-InP-InAs nanowire devices to enhance light absorption within a subwavelength region near an InP energy barrier that serves as an energy filter. From photon-energy- and irradiance-dependent photocurrent and photovoltage measurements, we find that photocurrent generation is dominated by internal photoemission of nonthermalized hot electrons when the photoexcited electron energy is above the barrier and by photothermionic emission when the energy is below the barrier. We estimate that an internal quantum efficiency up to 0.5-1.2% is achieved. Insights from this study provide guidelines to improve internal quantum efficiencies based on nanowire heterostructures.
引用
收藏
页码:4064 / 4072
页数:9
相关论文
共 58 条
[1]  
Afanasev V.V., 2014, Internal Photoemission of Electrons and Holes from (100)Si into HfO2
[2]   Probing the ultimate plasmon confinement limits with a van der Waals heterostructure [J].
Alcaraz Iranzo, David ;
Nanot, Sebastien ;
Dias, Eduardo J. C. ;
Epstein, Itai ;
Peng, Cheng ;
Efetov, Dmitri K. ;
Lundeberg, Mark B. ;
Parret, Romain ;
Osmond, Johann ;
Hong, Jin-Yong ;
Kong, Jing ;
Englund, Dirk R. ;
Peres, Nuno M. R. ;
Koppens, Frank H. L. .
SCIENCE, 2018, 360 (6386) :291-295
[3]  
[Anonymous], 2007, Plasmonics: Fundamentals and Applications, DOI DOI 10.1007/0-387-37825-1
[4]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[5]   Nanoantennas for visible and infrared radiation [J].
Biagioni, Paolo ;
Huang, Jer-Shing ;
Hecht, Bert .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
[6]   One-dimensional steeplechase for electrons realized [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
NANO LETTERS, 2002, 2 (02) :87-89
[7]  
Bowers J. E., 1994, HDB OPTICS FUNDAMENT, V1
[8]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/NMAT2477, 10.1038/nmat2477]
[9]   Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna [J].
Chalabi, Hamidreza ;
Schoen, David ;
Brongersma, Mark L. .
NANO LETTERS, 2014, 14 (03) :1374-1380
[10]  
Chen I.-J., 2019, ARXIV191111415CONDMA