Interpolatory band-limited wavelet bases on the sphere

被引:4
作者
Fernández, NL
Prestin, J
机构
[1] GSF Forschungszentrum Umwelt & Gesundheit, Inst Biomath & Biometrie, D-85764 Neuherberg, Germany
[2] Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
关键词
fundamental systems; polynomial interpolation; band-limited functions on the sphere; polynomial bases;
D O I
10.1007/s00365-005-0601-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we construct space-localized bases for the space W-n(n) := circle plus(k=n+1)(2n) Harm(k)(S-2) of band-limited functions on the sphere. Each of the basis functions is a zonal polynomial centered at a point Ili E S2. The goal of this work is to describe explicit fundamental systems {n(j)}(j=1,...,Mn) for the space W-n(n) which finally lead to space-and frequency-localized polynomial bases for L-2(S-2).
引用
收藏
页码:79 / 101
页数:23
相关论文
共 17 条
[1]  
[Anonymous], 1998, CONSTR APPROX
[2]   COMPUTING FOURIER-TRANSFORMS AND CONVOLUTIONS ON THE 2-SPHERE [J].
DRISCOLL, JR ;
HEALY, DM .
ADVANCES IN APPLIED MATHEMATICS, 1994, 15 (02) :202-250
[3]   On product integration with Gauss-Kronrod nodes [J].
Ehrich, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :78-92
[4]  
Fernández NL, 2003, INT S NUM M, V142, P39
[5]  
FERNANDEZ NL, 2003, THESIS U LUBECK BERL
[6]   Wavelets based on orthogonal polynomials [J].
Fischer, B ;
Prestin, J .
MATHEMATICS OF COMPUTATION, 1997, 66 (220) :1593-1618
[7]  
GOLITSCHEK MV, 2001, CONSTR APPROX, V17, P1
[8]  
HEMMAT AA, 2003, MAT ZAMETKI, V74, P292
[9]  
JETTER K, 1983, ENCY MATH ITS APPL, V19
[10]   Polynomial frames on the sphere [J].
Mhaskar, HN ;
Narcowich, FJ ;
Prestin, J ;
Ward, JD .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 13 (04) :387-403