GPZ: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts

被引:84
作者
Almosallam, Ibrahim A. [1 ,2 ]
Jarvis, Matt J. [3 ,4 ]
Roberts, Stephen J. [2 ]
机构
[1] King Abdulaziz City Sci & Technol, Riyadh 1142, Saudi Arabia
[2] Parks Rd, Oxford OX1 3PJ, England
[3] Oxford Astrophys, Dept Phys, Keble Rd, Oxford OX1 3RH, England
[4] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa
关键词
methods: data analysis; galaxies: distances and redshifts; PROCESS REGRESSION; PREDICTION; SDSS;
D O I
10.1093/mnras/stw1618
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre Array. However, determining accurate variance predictions alongside single point estimates is crucial, as they can be used to optimize the sample of galaxies for the specific experiment (e.g. weak lensing, baryon acoustic oscillations, supernovae), trading off between completeness and reliability in the galaxy sample. The various sources of uncertainty in measurements of the photometry and redshifts put a lower bound on the accuracy that any model can hope to achieve. The intrinsic uncertainty associated with estimates is often non-uniform and input-dependent, commonly known in statistics as heteroscedastic noise. However, existing approaches are susceptible to outliers and do not take into account variance induced by non-uniform data density and in most cases require manual tuning of many parameters. In this paper, we present a Bayesian machine learning approach that jointly optimizes the model with respect to both the predictive mean and variance we refer to as Gaussian processes for photometric redshifts (GPZ). The predictive variance of the model takes into account both the variance due to data density and photometric noise. Using the Sloan Digital Sky Survey (SDSS) DR12 data, we show that our approach substantially outperforms other machine learning methods for photo-z estimation and their associated variance, such as TPZ and ANNZ2. We provide a MATLAB and PYTHON implementations that are available to download at https://github.com/OxfordML/GPz.
引用
收藏
页码:726 / 739
页数:14
相关论文
共 41 条
  • [1] A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies
    Abdalla, F. B.
    Banerji, M.
    Lahav, O.
    Rashkov, V.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 417 (03) : 1891 - 1903
  • [2] THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III
    Alam, Shadab
    Albareti, Franco D.
    Allende Prieto, Carlos
    Anders, F.
    Anderson, Scott F.
    Anderton, Timothy
    Andrews, Brett H.
    Armengaud, Eric
    Aubourg, Eric
    Bailey, Stephen
    Basu, Sarbani
    Bautista, Julian E.
    Beaton, Rachael L.
    Beers, Timothy C.
    Bender, Chad F.
    Berlind, Andreas A.
    Beutler, Florian
    Bhardwaj, Vaishali
    Bird, Jonathan C.
    Bizyaev, Dmitry
    Blake, Cullen H.
    Blanton, Michael R.
    Blomqvist, Michael
    Bochanski, John J.
    Bolton, Adam S.
    Bovy, Jo
    Bradley, A. Shelden
    Brandt, W. N.
    Brauer, D. E.
    Brinkmann, J.
    Brown, Peter J.
    Brownstein, Joel R.
    Burden, Angela
    Burtin, Etienne
    Busca, Nicolas G.
    Cai, Zheng
    Capozzi, Diego
    Rosell, Aurelio Carnero
    Carr, Michael A.
    Carrera, Ricardo
    Chambers, K. C.
    Chaplin, William James
    Chen, Yen-Chi
    Chiappini, Cristina
    Chojnowski, S. Drew
    Chuang, Chia-Hsun
    Clerc, Nicolas
    Comparat, Johan
    Covey, Kevin
    Croft, Rupert A. C.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2015, 219 (01)
  • [3] A sparse Gaussian process framework for photometric redshift estimation
    Almosallam, Ibrahim A.
    Lindsay, Sam N.
    Jarvis, Matt J.
    Roberts, Stephen J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (03) : 2387 - 2401
  • [4] [Anonymous], 2005, minfunc: unconstrained differentiable multivariate optimization in matlab
  • [5] Robust machine learning applied to astronomical data sets.: III.: Probabilistic photometric redshifts for galaxies and quasars in the SDSS and GALEX
    Ball, Nicholas M.
    Brunner, Robert J.
    Myers, Adam D.
    Strand, Natalie E.
    Alberts, Stacey L.
    Tcheng, David
    [J]. ASTROPHYSICAL JOURNAL, 2008, 683 (01) : 12 - 21
  • [6] Bishop C.M., 2006, PATTERN RECOGN, V4, P738, DOI DOI 10.1117/1.2819119
  • [7] Bolzonella M, 2000, ASTRON ASTROPHYS, V363, P476
  • [8] Photometric redshift estimation using Gaussian processes
    Bonfield, D. G.
    Sun, Y.
    Davey, N.
    Jarvis, M. J.
    Abdalla, F. B.
    Banerji, M.
    Adams, R. G.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 405 (02) : 987 - 994
  • [9] Bonnett C., 2015, ARXIV150705909
  • [10] EAZY: A FAST, PUBLIC PHOTOMETRIC REDSHIFT CODE
    Brammer, Gabriel B.
    van Dokkum, Pieter G.
    Coppi, Paolo
    [J]. ASTROPHYSICAL JOURNAL, 2008, 686 (02) : 1503 - 1513