A fast algorithm for the linear complexity of periodic sequences

被引:0
|
作者
Wei, SM [1 ]
Chen, Z
Wang, Z
机构
[1] Huaibei Coal Normal Coll, Dept Comp Sci & Technol, Huaibei 235000, Peoples R China
[2] Peking Univ, Dept Comp Sci & Technol, Beijing 100871, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2004年 / 13卷 / 01期
关键词
cryptography; stream cipher; periodic sequence; linear complexity; minimal polynomial; fast algorithm;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient algorithm for determining the linear complexity and the minimal polynomial of a sequence with period 2p(m)q(n) over a finite field GF(q) is proposed, where p and q are primes, and q is a primitive root modulo p(2). The new algorithm generalizes the algorithm for computing the linear complexity of a sequence with period q(n) over GF(q) and the algorithm for computing one of a sequence with period 2p(m) over GF(q).
引用
收藏
页码:86 / 91
页数:6
相关论文
共 50 条
  • [41] Expansion complexity and linear complexity of sequences over finite fields
    Merai, Laszlo
    Niederreiter, Harald
    Winterhof, Arne
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (04): : 501 - 509
  • [42] A counterexample concerning the 3-error linear complexity of 2n-periodic binary sequences
    Jianqin Zhou
    Designs, Codes and Cryptography, 2012, 64 : 285 - 286
  • [43] ON THE k-ERROR LINEAR COMPLEXITY FOR pn-PERIODIC BINARY SEQUENCES VIA HYPERCUBE THEORY
    Zhou, Jianqin
    Liu, Wanquan
    Wang, Xifeng
    Zhou, Guanglu
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2019, 2 (04): : 279 - 297
  • [44] A counterexample concerning the 3-error linear complexity of 2n-periodic binary sequences
    Zhou, Jianqin
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 64 (03) : 285 - 286
  • [45] Counting Functions for the k-Error Linear Complexity of 2n-Periodic Binary Sequences
    Kavuluru, Ramakanth
    Klapper, Andrew
    SELECTED AREAS IN CRYPTOGRAPHY, 2009, 5381 : 151 - 164
  • [46] A formula on linear complexity of highest coordinate sequences from maximal periodic sequences over Galois rings
    Hu Lei
    Sun Nigang
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2006, 16 (09) : 998 - 1001
  • [47] A formula on linear complexity of highest coordinate sequences from maximal periodic sequences over Galois rings
    HU Lei and SUN Nigang (State Key Laboratory of Information Security
    Progress in Natural Science, 2006, (09) : 998 - 1001
  • [48] On the Linear Complexity of Legendre Sequences Over Fq
    Wang, Qiuyan
    Lin, Dongdai
    Guang, Xuan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (07): : 1627 - 1630
  • [49] Linear Complexity of Binary Whiteman Generalized Cyclotomic Sequences of Order 4
    Li, Xiaoping
    Ma, Wenping
    Yan, Tongjiang
    Zhao, Xubo
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (01) : 363 - 366
  • [50] On the linear complexity of Legendre-Sidelnikov sequences
    Su, Ming
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (03) : 703 - 717