A fast algorithm for the linear complexity of periodic sequences

被引:0
|
作者
Wei, SM [1 ]
Chen, Z
Wang, Z
机构
[1] Huaibei Coal Normal Coll, Dept Comp Sci & Technol, Huaibei 235000, Peoples R China
[2] Peking Univ, Dept Comp Sci & Technol, Beijing 100871, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2004年 / 13卷 / 01期
关键词
cryptography; stream cipher; periodic sequence; linear complexity; minimal polynomial; fast algorithm;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient algorithm for determining the linear complexity and the minimal polynomial of a sequence with period 2p(m)q(n) over a finite field GF(q) is proposed, where p and q are primes, and q is a primitive root modulo p(2). The new algorithm generalizes the algorithm for computing the linear complexity of a sequence with period q(n) over GF(q) and the algorithm for computing one of a sequence with period 2p(m) over GF(q).
引用
收藏
页码:86 / 91
页数:6
相关论文
共 50 条
  • [32] On the Second Descent Points for the K-Error Linear Complexity of 2n-Periodic Binary Sequences
    Zhou, Jianqin
    Wang, Xifeng
    Liu, Wanquan
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, INFORMATION MANAGEMENT AND NETWORK SECURITY, 2016, 47 : 311 - 314
  • [33] On linear complexity of Kronecker sequences
    Wang, QL
    Hu, L
    Dai, ZD
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (11) : 2853 - 2859
  • [34] STRUCTURE ANALYSIS ON THE κ-ERROR LINEAR COMPLEXITY FOR 2n-PERIODIC BINARY SEQUENCES
    Zhou, Jianqin
    Liu, Wanquan
    Wang, Xifeng
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2017, 13 (04) : 1743 - 1757
  • [35] Linear Complexity of n-Periodic Cyclotomic Sequences over Fp
    Wang, Qiuyan
    Yan, Yang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (05) : 785 - 791
  • [36] Investigations on Periodic Sequences With Maximum Nonlinear Complexity
    Sun, Zhimin
    Zeng, Xiangyong
    Li, Chunlei
    Helleseth, Tor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6188 - 6198
  • [37] On the linear complexity of Legendre–Sidelnikov sequences
    Ming Su
    Designs, Codes and Cryptography, 2015, 74 : 703 - 717
  • [38] Linear Complexity of a Family of Binary pq2-Periodic Sequences From Euler Quotients
    Zhang, Jingwei
    Gao, Shuhong
    Zhao, Chang-An
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5774 - 5780
  • [39] COMPLETE CHARACTERIZATION OF THE FIRST DESCENT POINT DISTRIBUTION FOR THE k-ERROR LINEAR COMPLEXITY OF 2-PERIODIC BINARY SEQUENCES
    Zhou, Jianqin
    Liu, Wanquan
    Wang, Xifeng
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (03) : 429 - 444
  • [40] Expansion complexity and linear complexity of sequences over finite fields
    László Mérai
    Harald Niederreiter
    Arne Winterhof
    Cryptography and Communications, 2017, 9 : 501 - 509