Developmental and Adult Expression Patterns of the G-Protein-Coupled Receptor GPR88 in the Rat: Establishment of a Dual Nuclear-Cytoplasmic Localization

被引:18
作者
Massart, Renaud [1 ,2 ]
Mignon, Virginie [1 ,3 ]
Stanic, Jennifer [1 ]
Munoz-Tello, Paola [1 ]
Becker, Jerome A. J. [4 ,5 ]
Kieffer, Brigitte L. [4 ,6 ]
Darmon, Michele [1 ]
Sokoloff, Pierre [2 ]
Diaz, Jorge [1 ,3 ]
机构
[1] Univ Paris 05, Ctr Psychiat & Neurosci, INSERM, UMR894, F-75014 Paris, France
[2] Pierre Fabre Res Inst, Neurol Psychiat Dept, F-81100 Castres, France
[3] Univ Paris 05, Sorbonne Paris Cite, F-75006 Paris, France
[4] Univ Strasbourg, Inst Gent & Biol Mol & Cellulaire, CNRS, INSERM, F-67400 Illkirch Graffenstaden, France
[5] Univ ~ Tours Rabelais, Physiol Reprod & Comportements, INRA UMR0085, CNRS,UMR7247,INSERM, F-37380 Nouzilly, France
[6] McGill Univ, Douglas Hosp, Res Ctr, Dept Psychiat,Fac Med, Verdun, PQ H4H 1R3, Canada
关键词
nuclear GPCRs; development; neocortex; nucleus; DOPAMINE D-3 RECEPTOR; PROJECTION NEURON IDENTITY; SPIRAL GANGLION-CELLS; POSTNATAL-DEVELOPMENT; ALDOSTERONE SYNTHASE; NEUROTROPHIC FACTOR; WHITE PULP; BINDING; BRAIN; GENES;
D O I
10.1002/cne.23991
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:2776 / 2802
页数:27
相关论文
共 88 条
[1]   Satb2 regulates callosal projection neuron identity in the developing cerebral cortex [J].
Alcamo, Elizabeth A. ;
Chirivella, Laura ;
Dautzenberg, Marcel ;
Dobreva, Gergana ;
Farinas, Isabel ;
Grosschedl, Rudolf ;
McConnell, Susan K. .
NEURON, 2008, 57 (03) :364-377
[2]   Anterograde transport of brain-derived neurotrophic factor and its role in the brain [J].
Altar, CA ;
Cai, N ;
Bliven, T ;
Juhasz, M ;
Conner, JM ;
Acheson, AL ;
Lindsay, RM ;
Wiegand, SJ .
NATURE, 1997, 389 (6653) :856-860
[3]   Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo [J].
Arlotta, P ;
Molyneaux, BJ ;
Chen, J ;
Inoue, J ;
Kominami, R ;
Macklis, JD .
NEURON, 2005, 45 (02) :207-221
[4]   TRANSCRIPTOME ANALYSIS IDENTIFIES GENES WITH ENRICHED EXPRESSION IN THE MOUSE CENTRAL EXTENDED AMYGDALA [J].
Becker, J. A. J. ;
Befort, K. ;
Blad, C. ;
Filliol, D. ;
Ghate, A. ;
Dembele, D. ;
Thibalilv, C. ;
Koch, M. ;
Muller, J. ;
Lardenois, A. ;
Poch, O. ;
Kieffer, B. L. .
NEUROSCIENCE, 2008, 156 (04) :950-965
[5]   Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala [J].
Befort, K. ;
Filliol, D. ;
Ghate, A. ;
Darcq, E. ;
Matifas, A. ;
Muller, J. ;
Lardenois, A. ;
Thibault, C. ;
Dembele, D. ;
Le Merrer, J. ;
Becker, J. A. J. ;
Poch, O. ;
Kieffer, B. L. .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2008, 27 (11) :2973-2984
[6]   Synaptic and cognitive abnormalities in mouse models of down syndrome: Exploring genotype-phenotype relationships [J].
Belichenko, Pavel V. ;
Kleschevnikov, Alexander M. ;
Salehi, Ahmad ;
Epstein, Charles J. ;
Mobley, William C. .
JOURNAL OF COMPARATIVE NEUROLOGY, 2007, 504 (04) :329-345
[7]   Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function [J].
Bézard, E ;
Ferry, S ;
Mach, U ;
Stark, H ;
Leriche, L ;
Boraud, T ;
Gross, C ;
Sokoloff, P .
NATURE MEDICINE, 2003, 9 (06) :762-767
[8]   Presence of functional endothelin-1 receptors in nuclear membranes of human aortic vascular smooth muscle cells [J].
Bkaily, G ;
Choufani, S ;
Hassan, G ;
El-Bizri, N ;
Jacques, D ;
D'Orléans-Juste, PD .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2000, 36 :S414-S417
[9]   Effects of antidepressant treatment on gene expression profile in mouse brain: cell type-specific transcription profiling using laser microdissection and microarray analysis [J].
Boehm, C ;
Newrzella, D ;
Herberger, S ;
Schramm, N ;
Eisenhardt, G ;
Schenk, V ;
Sonntag-Buck, V ;
Sorgenfrei, O .
JOURNAL OF NEUROCHEMISTRY, 2006, 97 :44-49
[10]   ROLE OF GLUCOCORTICOIDS IN EXPRESSION OF THE ADRENERGIC PHENOTYPE IN RAT EMBRYONIC ADRENAL-GLAND [J].
BOHN, MC ;
GOLDSTEIN, M ;
BLACK, IB .
DEVELOPMENTAL BIOLOGY, 1981, 82 (01) :1-10