A posteriori discontinuous Galerkin error estimator for linear elasticity

被引:14
作者
Bird, Robert E. [1 ]
Coombs, William M. [1 ]
Giani, Stefano [1 ]
机构
[1] Univ Durham, Dept Engn, South Rd, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Discontinuous Galerkin; Error estimator; Linear elasticity; FINITE-ELEMENT METHODS; ELLIPTIC PROBLEMS; EQUATIONS; CONVERGENCE; VERSION;
D O I
10.1016/j.amc.2018.08.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents for the first time the derivation of an hp a posteriori error estimator for the symmetric interior penalty discontinuous Galerkin finite element method for linear elastic analysis. Any combination of Neumann and Dirichlet boundary conditions are admissible in the formulation, including applying Neumann and Dirichlet on different components on the same region of the boundary. Therefore, the error estimator is applicable to a variety of physical problems. The error estimator is incorporated into an hp-adaptive finite element solver and verified against smooth and non-smooth problems with closed-form analytical solutions, as well as, being demonstrated on a non-smooth problem with complex boundary conditions. The hp-adaptive finite element analyses achieve exponential rates of convergence. The performances of the hp-adaptive scheme are contrasted against uniform and adaptive h refinement. This paper provides a complete framework for adaptivity in the symmetric interior penalty discontinuous Galerkin finite element method for linear elastic analysis. (C) 2018 The Author(s). Published by Elsevier Inc.
引用
收藏
页码:78 / 96
页数:19
相关论文
共 50 条
[21]   A hybridizable discontinuous Galerkin method for linear elasticity [J].
Soon, S. -C. ;
Cockburn, B. ;
Stolarski, Henryk K. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (08) :1058-1092
[22]   On the Local Discontinuous Galerkin Method for Linear Elasticity [J].
Chen, Yuncheng ;
Huang, Jianguo ;
Huang, Xuehai ;
Xu, Yifeng .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
[23]   ON A POSTERIORI ERROR ESTIMATES FOR SPACE TIME DISCONTINUOUS GALERKIN METHOD [J].
Dolejsi, Vit ;
Roskovec, Filip ;
Vlasak, Miloslav .
PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, :125-134
[24]   A priori and a posteriori error analyses of an augmented discontinuous Galerkin formulation [J].
Barrios, Tomas P. ;
Bustinza, Rommel .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) :987-1008
[25]   Discontinuous Galerkin methods for a contact problem with Tresca friction arising in linear elasticity [J].
Porwal, Kamana .
APPLIED NUMERICAL MATHEMATICS, 2017, 112 :182-202
[26]   A posteriori error estimate for discontinuous Galerkin finite element method on polytopal mesh [J].
Cui, Jintao ;
Cao, Fuzheng ;
Sun, Zhengjia ;
Zhu, Peng .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (03) :601-616
[27]   Pointwise a posteriori error analysis of a discontinuous Galerkin method for the elliptic obstacle problem [J].
de Dios, Blanca Ayuso ;
Gudi, Thirupathi ;
Porwal, Kamana .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) :2377-2412
[28]   A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity [J].
Barrios, Tomas P. ;
Gatica, Gabriel N. ;
Gonzalez, Maria ;
Heuer, Norbert .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05) :843-869
[29]   A posteriori error estimator for mixed interior penalty discontinuous Galerkin finite element method for the H(curl)-elliptic problems [J].
Tang, Ming ;
Xing, Xiaoqing ;
Zhong, Liuqiang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
[30]   A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff-Love plate [J].
Hansbo, Peter ;
Larson, Mats G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (47-48) :3289-3295