Radiomics-based prediction model for outcomes of PD-1/PD-L1 immunotherapy in metastatic urothelial carcinoma

被引:53
作者
Park, Kye Jin [1 ]
Lee, Jae-Lyun [2 ]
Yoon, Shin-Kyo [2 ]
Heo, Changhoe [3 ]
Park, Bum Woo [3 ]
Kim, Jeong Kon [1 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Oncol, Seoul, South Korea
[3] Univ Ulsan, Coll Med, Asan Inst Life Sci, Seoul 05505, South Korea
基金
新加坡国家研究基金会;
关键词
Immunotherapy; Urinary bladder neoplasms; Urologic neoplasms; IMMUNE CHECKPOINT INHIBITOR; TUMOR SIZE; FEATURES; EFFICACY; THERAPY; BIOLOGY; CANCER; RECIST;
D O I
10.1007/s00330-020-06847-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To evaluate the usefulness of a radiomics-based prediction model for predicting response and survival outcomes of patients with metastatic urothelial carcinoma treated with immunotherapy targeting programmed cell death 1 (PD-1) and its ligand (PD-L1). Methods Sixty-two patients who underwent immunotherapy were divided into training (n = 41) and validation sets (n = 21). A total of 224 measurable lesions were identified on contrast-enhanced CT. A radiomics signature was constructed with features selected using a least absolute shrinkage and selection operator algorithm in the training set. A radiomics-based model was built based on a radiomics signature consisting of five reliable RFs and the presence of visceral organ involvement using multivariate logistic regression. According to a cutoff determined on the training set, patients in the validation set were assigned to either high- or low-risk groups. Kaplan-Meier analysis was performed to compare progression-free and overall survival between high- and low-risk groups. Results For predicting objective response and disease control, the areas under the receiver operating characteristic curves of the radiomics-based model were 0.87 (95% CI, 0.65-0.97) and 0.88 (95% CI, 0.67-0.98) for the validation set, providing larger net benefit determined by decision curve analysis than without radiomics-based model. The high-risk group in the validation set showed shorter progression-free and overall survival than the low-risk group (log-rank p = 0.044 and p = 0.035). Conclusions The radiomics-based model may predict the response and survival outcome in patients treated with PD-1/PD-L1 immunotherapy for metastatic urothelial carcinoma. This approach may provide important and decision tool for planning immunotherapy.
引用
收藏
页码:5392 / 5403
页数:12
相关论文
共 36 条
[1]   Highly efficient carrier multiplication in PbS nanosheets [J].
Aerts, Michiel ;
Bielewicz, Thomas ;
Klinke, Christian ;
Grozema, Ferdinand C. ;
Houtepen, Arjan J. ;
Schins, Juleon M. ;
Siebbeles, Laurens D. A. .
NATURE COMMUNICATIONS, 2014, 5
[2]   Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms [J].
Altazi, Baderaldeen A. ;
Zhang, Geoffrey G. ;
Fernandez, Daniel C. ;
Montejo, Michael E. ;
Hunt, Dylan ;
Werner, Joan ;
Biagioli, Matthew C. ;
Moros, Eduardo G. .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2017, 18 (06) :32-48
[3]  
[Anonymous], BREAST CANCER RES
[4]   Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis [J].
Arsham, AM ;
Plas, DR ;
Thompson, CB ;
Simon, MC .
CANCER RESEARCH, 2004, 64 (10) :3500-3507
[5]   Imaging genotyping of functional signaling pathways in lung squamous cell carcinoma using a radiomics approach [J].
Bak, So Hyeon ;
Park, Hyunjin ;
Lee, Ho Yun ;
Kim, Youngwook ;
Kim, Hyung-Lae ;
Jung, Sin-Ho ;
Kim, Hyeseung ;
Kim, Jonghoon ;
Park, Keunchil .
SCIENTIFIC REPORTS, 2018, 8
[6]   Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma [J].
Bellmunt, J. ;
de Wit, R. ;
Vaughn, D. J. ;
Fradet, Y. ;
Lee, J. -L. ;
Fong, L. ;
Vogelzang, N. J. ;
Climent, M. A. ;
Petrylak, D. P. ;
Choueiri, T. K. ;
Necchi, A. ;
Gerritsen, W. ;
Gurney, H. ;
Quinn, D. I. ;
Culine, S. ;
Sternberg, C. N. ;
Mai, Y. ;
Poehlein, C. H. ;
Perini, R. F. ;
Bajorin, D. F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (11) :1015-1026
[7]   Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters [J].
Berenguer, Roberto ;
del Rosario Pastor-Juan, Maria ;
Canales-Vazquez, Jesus ;
Castro-Garcia, Miguel ;
Villas, Maria Victoria ;
Mansilla Legorburo, Francisco ;
Sabater, Sebastia .
RADIOLOGY, 2018, 288 (02) :407-415
[8]   Advances in molecular imaging of immune checkpoint targets in malignancies: current and future prospect [J].
Du, Yang ;
Jin, Yinhua ;
Sun, Wei ;
Fang, Junjie ;
Zheng, Jianjun ;
Tian, Jie .
EUROPEAN RADIOLOGY, 2019, 29 (08) :4294-4302
[9]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247
[10]   Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing [J].
Gerlinger, Marco ;
Rowan, Andrew J. ;
Horswell, Stuart ;
Larkin, James ;
Endesfelder, David ;
Gronroos, Eva ;
Martinez, Pierre ;
Matthews, Nicholas ;
Stewart, Aengus ;
Tarpey, Patrick ;
Varela, Ignacio ;
Phillimore, Benjamin ;
Begum, Sharmin ;
McDonald, Neil Q. ;
Butler, Adam ;
Jones, David ;
Raine, Keiran ;
Latimer, Calli ;
Santos, Claudio R. ;
Nohadani, Mahrokh ;
Eklund, Aron C. ;
Spencer-Dene, Bradley ;
Clark, Graham ;
Pickering, Lisa ;
Stamp, Gordon ;
Gore, Martin ;
Szallasi, Zoltan ;
Downward, Julian ;
Futreal, P. Andrew ;
Swanton, Charles .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) :883-892