On the Number of Limit Cycles of Discontinuous Lienard Polynomial Differential Systems

被引:2
作者
Jiang, Fangfang [1 ]
Ji, Zhicheng [2 ]
Wang, Yan [2 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sch IoT Engn, Wuxi 214122, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2018年 / 28卷 / 14期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Discontinuity; Lienard polynomial differential system; averaging theory; number of limit cycles; AVERAGING THEORY; PERIODIC-SOLUTIONS; EQUATIONS;
D O I
10.1142/S0218127418501754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the number of limit cycles for two classes of discontinuous Lienard polynomial perturbed differential systems. By the second-order averaging theorem of discontinuous differential equations, we provide several criteria on the lower upper bounds for the maximum number of limit cycles. The results show that the second-order averaging theorem of discontinuous differential equations can predict more limit cycles than the first-order one.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On the Number of Limit Cycles for Discontinuous Generalized Lienard Polynomial Differential Systems
    Jiang, Fangfang
    Shi, Junping
    Sun, Jitao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [2] ON THE NUMBER OF LIMIT CYCLES FOR A GENERALIZATION OF LIENARD POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Valls, Claudia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03):
  • [3] MAXIMUM NUMBER OF LIMIT CYCLES FOR GENERALIZED LIENARD POLYNOMIAL DIFFERENTIAL SYSTEMS
    Berbache, Aziza
    Bendjeddou, Ahmed
    Benadouane, Sabah
    MATHEMATICA BOHEMICA, 2021, 146 (02): : 151 - 165
  • [4] LIMIT CYCLES FOR DISCONTINUOUS GENERALIZED LIENARD POLYNOMIAL DIFFERENTIAL EQUATIONS
    Llibre, Jaume
    Mereu, Ana Cristina
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [5] Limit cycles for a generalization of polynomial Lienard differential systems
    Llibre, Jaume
    Valls, Claudia
    CHAOS SOLITONS & FRACTALS, 2013, 46 : 65 - 74
  • [6] On the limit cycles for a class of generalized Lienard differential systems
    Diab, Zouhair
    Guirao, Juan L. G.
    Vera, Juan A.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (01): : 1 - 8
  • [7] On the limit cycles for a class of discontinuous piecewise cubic polynomial differential systems
    Huang, Bo
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (25) : 1 - 24
  • [8] On the Number of Limit Cycles in Two Classes of Polynomial Differential Systems
    Bao, Yu
    Li, Shimin
    Llibre, Jaume
    Zhao, Yulin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025,
  • [9] A survey on the limit cycles of the generalized polynomial Lienard differential equations
    Llibre, Jaume
    MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 224 - 233
  • [10] LIMIT CYCLES FOR A CLASS OF GENERALIZED LIENARD POLYNOMIAL DIFFERENTIAL SYSTEMS VIA AVERAGING THEORY
    Kina, A.
    Berbache, A.
    Bendjeddou, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (04): : 437 - 455