Global stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality and prey harvesting

被引:3
|
作者
Li, Yan [1 ]
Li, Sanyun [1 ]
Zhao, Jingfu [2 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
[2] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
predator-prey model; Hopf bifurcation; global asymptotical stability; iterative technique; center manifold theorem; SYSTEM; INTERFERENCE; DYNAMICS;
D O I
10.15388/NA.2017.5.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a predator-prey model with hyperbolic mortality and prey harvesting. The parameter regions for the stability and instability of the unique positive constant solution of ODE and PDE are derived, respectively. Especially, the global asymptotical stability of positive constant equilibrium of the diffusive model is obtained by iterative technique. The stability and direction of periodic solutions of ODE and PDE are investigated by center manifold theorem and normal form theory, respectively. Numerical simulations are carried out to depict our theoretical analysis.
引用
收藏
页码:646 / 661
页数:16
相关论文
共 50 条
  • [31] Stability and Hopf bifurcation in a predator-prey model with stage structure for the predator
    Xu, Rui
    Ma, Zhien
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (04) : 1444 - 1460
  • [32] GLOBAL STABILITY AND HOPF BIFURCATION IN A DELAYED DIFFUSIVE LESLIE-GOWER PREDATOR-PREY SYSTEM
    Chen, Shanshan
    Shi, Junping
    Wei, Junjie
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03):
  • [33] Dynamics of a delayed diffusive predator-prey model with hyperbolic mortality
    Li, Yan
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2425 - 2436
  • [34] Stability Analysis and Hopf Bifurcation of a Delayed Diffusive Predator-Prey Model with a Strong Allee Effect on the Prey and the Effect of Fear on the Predator
    Xie, Yining
    Zhao, Jing
    Yang, Ruizhi
    MATHEMATICS, 2023, 11 (09)
  • [35] Turing instability and Hopf bifurcation in a predator-prey model with delay and predator harvesting
    Gao, Wenjing
    Tong, Yihui
    Zhai, Lihua
    Yang, Ruizhi
    Tang, Leiyu
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [36] Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey
    Meng, Xin-You
    Huo, Hai-Feng
    Zhang, Xiao-Bing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 1 - 25
  • [37] Hopf bifurcation and stability analysis for a predator-prey model with delays
    Chen, Hongbing
    Wang, Limei
    ADVANCES IN APPLIED SCIENCES AND MANUFACTURING, PTS 1 AND 2, 2014, 850-851 : 901 - 904
  • [38] Global Hopf Bifurcation of a Diffusive Modified Leslie-Gower Predator-Prey Model with Delay and Michaelis-Menten Type Prey Harvesting
    Wang, Ke
    Xu, Xiaofeng
    Liu, Ming
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
  • [39] Stability and Local Hopf Bifurcation for a Predator-Prey Model with Delay
    Xue, Yakui
    Wang, Xiaoqing
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [40] Global stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    APPLIED MATHEMATICS LETTERS, 2021, 114