Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration

被引:87
作者
Zhu, Shiyang [1 ]
Liow, T. Y. [1 ]
Lo, G. Q. [1 ]
Kwong, D. L. [1 ]
机构
[1] ASTAR, Inst Microelect, Singapore 117685, Singapore
来源
OPTICS EXPRESS | 2011年 / 19卷 / 09期
关键词
SUBWAVELENGTH CONFINEMENT; PROPAGATION; LOSSES;
D O I
10.1364/OE.19.008888
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Horizontal metal/insulator/Si/insulator/metal nanoplasmonic slot waveguide (PWG), which is inserted in a conventional Si wire waveguide, is fabricated using the standard Si-CMOS technology. A thin insulator between the metal and the Si core plays a key role: it not only increases the propagation distance as the theoretical prediction, but also prevents metal diffusion and/or metal-Si reaction. Cu-PWGs with the Si core width of similar to 134-21 nm and similar to 12-nm-thick SiO2 on each side exhibit a relatively low propagation loss of similar to 0.37-0.63 dB/mu m around the telecommunication wavelength of 1550 nm, which is similar to 2.6 times smaller than the Al-counterparts. A simple tapered coupler can provide an effective coupling between the PWG and the conventional Si wire waveguide. The coupling efficiency as high as similar to 0.1-0.4 dB per facet is measured. The PWG allows a sharp bending. The pure bending loss of a Cu-PWG direct 90 degrees bend is measured to be similar to 0.6-1.0 dB. These results indicate the potential for seamless integration of various functional nanoplasmonic devices in existing Si electronic photonic integrated circuits (Si-EPICs). (C) 2011 Optical Society of America
引用
收藏
页码:8888 / 8902
页数:15
相关论文
共 28 条
  • [1] Optical loss in silicon microphotonic waveguides induced by metallic contamination
    Barwicz, Tymon
    Holzwarth, Charles W.
    Rakich, Peter T.
    Popovic, Milos A.
    Ippen, Erich P.
    Smith, Henry I.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (13)
  • [2] A review of the optical properties of alloys and intermetallics for plasmonics
    Blaber, M. G.
    Arnold, M. D.
    Ford, M. J.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (14)
  • [3] Bozhevolnyi SI, 2009, PLASMONIC NANOGUIDES AND CIRCUITS, P1
  • [4] Channel plasmon subwavelength waveguide components including interferometers and ring resonators
    Bozhevolnyi, SI
    Volkov, VS
    Devaux, E
    Laluet, JY
    Ebbesen, TW
    [J]. NATURE, 2006, 440 (7083) : 508 - 511
  • [5] CHANG CY, 2000, ULSI TECHNOLOGY
  • [6] Subwavelength confinement in an integrated metal slot waveguide on silicon
    Chen, Long
    Shakya, Jagat
    Lipson, Michal
    [J]. OPTICS LETTERS, 2006, 31 (14) : 2133 - 2135
  • [7] A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement
    Dai, Daoxin
    He, Sailing
    [J]. OPTICS EXPRESS, 2009, 17 (19): : 16646 - 16653
  • [8] Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics
    Delacour, Cecile
    Blaize, Sylvain
    Grosse, Philippe
    Fedeli, Jean Marc
    Bruyant, Aurelien
    Salas-Montiel, Rafael
    Lerondel, Gilles
    Chelnokov, Alexei
    [J]. NANO LETTERS, 2010, 10 (08) : 2922 - 2926
  • [9] Characterization of bending losses for curved plasmonic nanowire waveguides
    Dikken, Dirk Jan
    Spasenovic, Marko
    Verhagen, Ewold
    van Oosten, Dries
    Kuipers, L.
    [J]. OPTICS EXPRESS, 2010, 18 (15): : 16112 - 16119
  • [10] Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization
    Dionne, JA
    Sweatlock, LA
    Atwater, HA
    Polman, A
    [J]. PHYSICAL REVIEW B, 2006, 73 (03)