A Cas9 with PAM recognition for adenine dinucleotides

被引:76
作者
Chatterjee, Pranam [1 ,2 ]
Lee, Jooyoung [3 ]
Nip, Lisa [1 ,2 ]
Koseki, Sabrina R. T. [1 ,2 ]
Tysinger, Emma [1 ,2 ]
Sontheimer, Erik J. [3 ]
Jacobson, Joseph M. [1 ,2 ]
Jakimo, Noah [1 ,2 ]
机构
[1] Ctr Bits & Atoms, Cambridge, MA 02139 USA
[2] MIT, Media Lab, Cambridge, MA 02139 USA
[3] Univ Massachusetts, Sch Med, RNA Therapeut Inst, Worcester, MA USA
基金
美国国家卫生研究院;
关键词
RNA-GUIDED ENDONUCLEASE; GENOMIC DNA; CRISPR; NUCLEASES; BASE; VARIANTS; COMPLEX; CPF1;
D O I
10.1038/s41467-020-16117-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-associated (Cas) DNA-endonucleases are remarkably effective tools for genome engineering, but have limited target ranges due to their protospacer adjacent motif (PAM) requirements. We demonstrate a critical expansion of the targetable sequence space for a type II-A CRISPR-associated enzyme through identification of the natural 5-NAAN-3 ' PAM preference of Streptococcus macacae Cas9 (SmacCas9). To achieve efficient editing activity, we graft the PAM-interacting domain of SmacCas9 to its well-established ortholog from Streptococcus pyogenes (SpyCas9), and further engineer an increased efficiency variant (iSpyMac) for robust genome editing activity. We establish that our hybrids can target all adenine dinucleotide PAM sequences and possess robust and accurate editing capabilities in human cells. p id=Par Protospacer adjacent motif (PAM) requirements limit the target range of CRISPR endonucleases. Here, the authors graft the 5 ' -NAAN-3 ' PAM-interacting domain of SmacCas9 onto SpyCas9 to create adenine dinucleotide targeting chimeras.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] CRISPR/Cas9 in allergic and immunologic diseases
    Goodman, Michael A.
    Manesh, Donya Moradi
    Malik, Punam
    Rothenberg, Marc E.
    EXPERT REVIEW OF CLINICAL IMMUNOLOGY, 2017, 13 (01) : 5 - 9
  • [42] CRISPR/Cas9 for cancer research and therapy
    Zhan, Tianzuo
    Rindtorff, Niklas
    Betge, Johannes
    Ebert, Matthias P.
    Boutros, Michael
    SEMINARS IN CANCER BIOLOGY, 2019, 55 : 106 - 119
  • [43] CRISPR/Cas9 therapeutics for liver diseases
    Aravalli, Rajagopal N.
    Steer, Clifford J.
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (06) : 4265 - 4278
  • [44] Cas9 deactivation with photocleavable guide RNAs
    Zou, Roger S.
    Liu, Yang
    Wu, Bin
    Ha, Taekjip
    MOLECULAR CELL, 2021, 81 (07) : 1553 - +
  • [45] A pipeline for characterization of novel Cas9 orthologs
    Karvelis, Tautvydas
    Young, Joshua K.
    Siksnys, Virginijus
    CRISPR-CAS ENZYMES, 2019, 616 : 219 - 240
  • [46] Programmable DNA cleavage in vitro by Cas9
    Karvelis, Tautvydas
    Gasiunas, Giedrius
    Siksnys, Virginijus
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2013, 41 : 1401 - +
  • [47] CRISPR/Cas9 therapeutics: progress and prospects
    Li, Tianxiang
    Yang, Yanyan
    Qi, Hongzhao
    Cui, Weigang
    Zhang, Lin
    Fu, Xiuxiu
    He, Xiangqin
    Liu, Meixin
    Li, Pei-feng
    Yu, Tao
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023, 8 (01)
  • [48] CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles
    Horodecka, Katarzyna
    Duchler, Markus
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [49] CRISPR/CAS9 Technologies
    Williams, Bart O.
    Warman, Matthew L.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2017, 32 (05) : 883 - 888
  • [50] What is CRISPR/Cas9?
    Redman, Melody
    King, Andrew
    Watson, Caroline
    King, David
    ARCHIVES OF DISEASE IN CHILDHOOD-EDUCATION AND PRACTICE EDITION, 2016, 101 (04): : 213 - 215