A Cas9 with PAM recognition for adenine dinucleotides

被引:83
作者
Chatterjee, Pranam [1 ,2 ]
Lee, Jooyoung [3 ]
Nip, Lisa [1 ,2 ]
Koseki, Sabrina R. T. [1 ,2 ]
Tysinger, Emma [1 ,2 ]
Sontheimer, Erik J. [3 ]
Jacobson, Joseph M. [1 ,2 ]
Jakimo, Noah [1 ,2 ]
机构
[1] Ctr Bits & Atoms, Cambridge, MA 02139 USA
[2] MIT, Media Lab, Cambridge, MA 02139 USA
[3] Univ Massachusetts, Sch Med, RNA Therapeut Inst, Worcester, MA USA
基金
美国国家卫生研究院;
关键词
RNA-GUIDED ENDONUCLEASE; GENOMIC DNA; CRISPR; NUCLEASES; BASE; VARIANTS; COMPLEX; CPF1;
D O I
10.1038/s41467-020-16117-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-associated (Cas) DNA-endonucleases are remarkably effective tools for genome engineering, but have limited target ranges due to their protospacer adjacent motif (PAM) requirements. We demonstrate a critical expansion of the targetable sequence space for a type II-A CRISPR-associated enzyme through identification of the natural 5-NAAN-3 ' PAM preference of Streptococcus macacae Cas9 (SmacCas9). To achieve efficient editing activity, we graft the PAM-interacting domain of SmacCas9 to its well-established ortholog from Streptococcus pyogenes (SpyCas9), and further engineer an increased efficiency variant (iSpyMac) for robust genome editing activity. We establish that our hybrids can target all adenine dinucleotide PAM sequences and possess robust and accurate editing capabilities in human cells. p id=Par Protospacer adjacent motif (PAM) requirements limit the target range of CRISPR endonucleases. Here, the authors graft the 5 ' -NAAN-3 ' PAM-interacting domain of SmacCas9 onto SpyCas9 to create adenine dinucleotide targeting chimeras.
引用
收藏
页数:6
相关论文
共 43 条
[11]   DNA Unwinding Is the Primary Determinant of CRISPR-Cas9 Activity [J].
Gong, Shanzhong ;
Yu, Helen Hong ;
Johnson, Kenneth A. ;
Taylor, David W. .
CELL REPORTS, 2018, 22 (02) :359-371
[12]   Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair [J].
Gutschner, Tony ;
Haemmerle, Monika ;
Genovese, Giannicola ;
Draetta, Giulio F. ;
Chin, Lynda .
CELL REPORTS, 2016, 14 (06) :1555-1566
[13]   Programmed DNA destruction by miniature CRISPR-Cas14 enzymes [J].
Harrington, Lucas B. ;
Burstein, David ;
Chen, Janice S. ;
Paez-Espino, David ;
Ma, Enbo ;
Witte, Isaac P. ;
Cofsky, Joshua C. ;
Kyrpides, Nikos C. ;
Banfield, Jillian F. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 362 (6416) :839-+
[14]   Editing the Epigenome: Reshaping the Genomic Landscape [J].
Holtzman, Liad ;
Gersbach, Charles A. .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 19, 2018, 19 :43-71
[15]   Evolved Cas9 variants with broad PAM compatibility and high DNA specificity [J].
Hu, Johnny H. ;
Miller, Shannon M. ;
Geurts, Maarten H. ;
Tang, Weixin ;
Chen, Liwei ;
Sun, Ning ;
Zeina, Christina M. ;
Gao, Xue ;
Rees, Holly A. ;
Lin, Zhi ;
Liu, David R. .
NATURE, 2018, 556 (7699) :57-+
[16]   CRISPR-Cas9 Structures and Mechanisms [J].
Jiang, Fuguo ;
Doudna, Jennifer A. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 46, 2017, 46 :505-529
[17]   Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage [J].
Jiang, Fuguo ;
Taylor, David W. ;
Chen, Janice S. ;
Kornfeld, Jack E. ;
Zhou, Kaihong ;
Thompson, Aubri J. ;
Nogales, Eva ;
Doudna, Jennifer A. .
SCIENCE, 2016, 351 (6275) :867-871
[18]   A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J].
Jinek, Martin ;
Chylinski, Krzysztof ;
Fonfara, Ines ;
Hauer, Michael ;
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2012, 337 (6096) :816-821
[19]   Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells [J].
Kleinstiver, Benjamin P. ;
Tsai, Shengdar Q. ;
Prew, Michelle S. ;
Nguyen, Nhu T. ;
Welch, Moira M. ;
Lopez, Jose M. ;
McCaw, Zachary R. ;
Aryee, Martin J. ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :869-+
[20]   Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition [J].
Kleinstiver, Benjamin P. ;
Prew, Michelle S. ;
Tsai, Shengdar Q. ;
Nguyen, Nhu T. ;
Topkar, Ved V. ;
Zheng, Zongli ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2015, 33 (12) :1293-+