Topological s-Wave Pairing Superconductivity with Spatial Inhomogeneity: Midgap-State Appearance and Robustness of Superconductivity

被引:6
|
作者
Nagai, Yuki [1 ]
Ota, Yukihiro [1 ]
Machida, Masahiko [1 ]
机构
[1] Japan Atom Energy Agcy, CCSE, Kashiwa, Chiba 2770871, Japan
关键词
IMPURITY SCATTERING;
D O I
10.7566/JPSJ.84.034711
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quasiparticle spectrum of 2D topological s-wave superconductors in the presence of spatial inhomogeneity. Solving the real-space Bogoliubov-de Gennes equations, we examine excitations within a superconducting gap amplitude, i.e., the appearance of midgap states. The model of spatial inhomogeneity is to add potential to a uniform system. Two types of setting, i.e., line-type (a chain of impurities) and point-type (a single impurity) potentials are examined. The line-type setting shows the link of midgap states with gapless surface modes in topological superfluid. The point-type one shows that quasiparticles with a midgap energy are much easily excited by an impurity, increasing a Zeeman magnetic field with a topological number unchanged. Thus, we obtain insights into the robustness of the 2D topological superconductors against nonmagnetic impurities. Moreover, we derive an effective theory applicable to high magnetic fields. The effective gap function is a mixture of chiral p-and s-wave characters. The former is predominant when the Zeeman magnetic field increases. Therefore, we claim that the chiral p-wave character of the effective gap function creates midgap states.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state
    Grinenko, V
    Sarkar, R.
    Kihou, K.
    Lee, C. H.
    Morozov, I
    Aswartham, S.
    Buechner, B.
    Chekhonin, P.
    Skrotzki, W.
    Nenkov, K.
    Huehne, R.
    Nielsch, K.
    Drechsler, S-L
    Vadimovs, V. L.
    Silaev, M. A.
    Volkov, P. A.
    Eremin, I
    Luetkens, H.
    Klauss, H-H
    NATURE PHYSICS, 2020, 16 (07) : 789 - +
  • [22] Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state
    V. Grinenko
    R. Sarkar
    K. Kihou
    C. H. Lee
    I. Morozov
    S. Aswartham
    B. Büchner
    P. Chekhonin
    W. Skrotzki
    K. Nenkov
    R. Hühne
    K. Nielsch
    S. -L. Drechsler
    V. L. Vadimov
    M. A. Silaev
    P. A. Volkov
    I. Eremin
    H. Luetkens
    H.-H. Klauss
    Nature Physics, 2020, 16 : 789 - 794
  • [23] Properties of anisotropic s-wave superconductivity in MgB2
    Chen, Yihong
    Haas, Stephan
    Maki, Kazumi
    CURRENT APPLIED PHYSICS, 2001, 1 (4-5) : 333 - 336
  • [24] Noncollinear order and gapless superconductivity in s-wave magnetic superconductors
    Karmakar, Madhuparna
    Majumdar, Pinaki
    PHYSICAL REVIEW B, 2016, 93 (19)
  • [25] Exotic s-wave superconductivity in alkali-doped fullerides
    Nomura, Yusuke
    Sakai, Shiro
    Capone, Massimo
    Arita, Ryotaro
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (15)
  • [26] High-Temperature Superconductivity: The Hole-Pairing Is s-Wave, and the Holes Are on the SrO, BaO, or Interstitial Oxygen
    John D. Dow
    Dale R. Harshmanh
    Journal of Low Temperature Physics, 2003, 131 : 483 - 492
  • [27] High-temperature superconductivity: The hole-pairing is s-wave, and the holes are on the SrO, BaO, or interstitial oxygen
    Dow, JD
    Harshman, DR
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2003, 131 (3-4) : 483 - 491
  • [28] Momentum relaxation in a semiconductor proximity-coupled to a disordered s-wave superconductor: Effect of scattering on topological superconductivity
    Lutchyn, Roman M.
    Stanescu, Tudor D.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2012, 85 (14):
  • [29] Evidence for isotropic s-wave superconductivity in high-entropy alloys
    Casey K. W. Leung
    Xiaofu Zhang
    Fabian von Rohr
    Rolf Lortz
    Berthold Jäck
    Scientific Reports, 12
  • [30] Can a Metal-Insulator Transition Induce s-Wave Superconductivity?
    Ph. Nozières
    Journal of Statistical Physics, 2004, 115 : 19 - 30