Spin-Lasing in Bimodal Quantum Dot Micropillar Cavities

被引:14
作者
Heermeier, Niels [1 ]
Heuser, Tobias [1 ]
Grosse, Jan [1 ]
Jung, Natalie [2 ]
Kaganskiy, Arsenty [1 ]
Lindemann, Markus [2 ]
Gerhardt, Nils C. [2 ]
Hofmann, Martin R. [2 ]
Reitzenstein, Stephan [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Ruhr Univ Bochum, Fak Elektrotech & Informat Tech, Lehrstuhl Photon & Terahertztechnol, Univ Str 150, D-44780 Bochum, Germany
基金
欧洲研究理事会;
关键词
bimodal micropillar cavities; cavity quantum electrodynamics; microlasers; quantum dots; spin-lasers; SURFACE-EMITTING LASERS; POLARIZATION DYNAMICS;
D O I
10.1002/lpor.202100585
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spin-controlled lasers are highly interesting photonic devices and have been shown to provide ultrafast polarization dynamics in excess of 200 GHz. In contrast to conventional semiconductor lasers their temporal properties are not limited by the intensity dynamics, but are governed primarily by the interaction of the spin dynamics with the birefringent mode splitting that determines the polarization oscillation frequency. Another class of modern semiconductor lasers are high-beta emitters, which benefit from enhanced light-matter interaction due to strong mode confinement in low-mode-volume microcavities. In such structures, the emission properties can be tailored by the resonator geometry to realize for instance bimodal emission behavior in slightly elliptical micropillar cavities. This attractive feature is utilized to demonstrate and explore spin-lasing effects in bimodal high-beta quantum dot micropillar lasers. The studied microlasers with a beta-factor of 4% show spin-laser effects with experimental polarization oscillation frequencies up to 15 GHz and predicted frequencies up to about 100 GHz, which are controlled by the ellipticity of the resonator. These results reveal appealing prospects for very compact, ultrafast, and energy-efficient spin-lasers and can pave the way for future purely electrically injected spin-lasers enabled by short injection path lengths.
引用
收藏
页数:8
相关论文
共 27 条
[1]   Ultrafast photonic crystal nanocavity laser [J].
Altug, Hatice ;
Englund, Dirk ;
Vuckovic, Jelena .
NATURE PHYSICS, 2006, 2 (07) :484-488
[2]   Optical pumping of quantum dot micropillar lasers [J].
Andreoli, L. ;
Porte, X. ;
Heuser, T. ;
Grobe, J. ;
Moeglen-Paget, B. ;
Furfaro, L. ;
Reitzenstein, S. ;
Brunner, D. .
OPTICS EXPRESS, 2021, 29 (06) :9084-9097
[3]   DEFINITION OF A LASER THRESHOLD [J].
BJORK, G ;
KARLSSON, A ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1994, 50 (02) :1675-1680
[4]   Quantum-optical influences in optoelectronics-An introduction [J].
Chow, Weng W. ;
Reitzenstein, Stephan .
APPLIED PHYSICS REVIEWS, 2018, 5 (04)
[5]   Polarization dynamics of optically pumped VCSEL's [J].
Gahl, A ;
Balle, S ;
San Miguel, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (03) :342-351
[6]   Quantum dot micropillar lasers [J].
Gies, Christopher ;
Reitzenstein, Stephan .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (07)
[7]  
Haghighi N, 2018, IEEE INT SEMICONDUCT, P245, DOI 10.1109/ISLC.2018.8516258
[8]   Development of Highly Homogenous Quantum Dot Micropillar Arrays for Optical Reservoir Computing [J].
Heuser, Tobias ;
Grosse, Jan ;
Holzinger, Steffen ;
Sommer, Maximilian M. ;
Reitzenstein, Stephan .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
[9]   Optically Pumped Spin-VCSELs: Toward High-Frequency Polarization Oscillations and Modulation [J].
Huang, Yu ;
Zhou, Pei ;
Torre, Maria Susana ;
Li, Nianqiang ;
Henning, Ian D. ;
Adams, Michael J. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2021, 57 (06)
[10]  
Jones N, 2018, NATURE, V561, P163, DOI 10.1038/d41586-018-06610-y