Sawdust-based superhydrophobic pellets for efficient oil-water separation

被引:79
|
作者
Latthe, Sanjay S. [1 ,2 ]
Kodag, Vishnu S. [2 ]
Sutar, Rajaram S. [2 ]
Bhosale, Appasaheb K. [2 ]
Nagappan, Saravanan [3 ]
Ha, Chang-Sik [3 ]
Sadasivuni, Kishor Kumar [4 ]
Kulal, Shivaji R. [2 ]
Liu, Shanhu [1 ]
Xing, Ruimin [1 ]
机构
[1] Henan Univ, Coll Chem & Chem Engn, Henan Key Lab Polyoxometalate Chem, Henan Joint Int Res Lab Environm Pollut Control M, Kaifeng 475004, Peoples R China
[2] Affiliated Shivaji Univ, Raje Ramrao Coll, Dept Phys, Self Cleaning Res Lab, Kolhapur 416404, Maharashtra, India
[3] Pusan Natl Univ, Dept Polymer Sci & Engn, Busan 46241, South Korea
[4] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar
基金
中国国家自然科学基金;
关键词
Sawdust; Superhydrophobic; Oil-water separation; Lotus effect; Rough microstructure; OIL/WATER SEPARATION; SURFACE; ROBUST; SELF; LOTUS; FABRICATION; EXPOSURE; SPILLS; SOOT;
D O I
10.1016/j.matchemphys.2020.122634
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Severe water pollution by means of oil is the major issue worldwide. Emerging materials like superhydrophobic surfaces have shown immense potential to control this issue. Herein we utilized low-cost Sawdust-Polystyrene (SD - PS) composite and developed a facile strategy to prepare a free-standing superhydrophobic pellet for efficient oil-water separation. More importantly, the simple recovery of the absorbed oil is feasible. To achieve crack-free, regular and robust superhydrophobic SD - PS pellet, the concentration of polystyrene, the quantity of sawdust in polymer solution and thickness of the pellet was optimised. The surface morphology analysis confirmed an adequate binding between sawdust and polystyrene in composite structure with formation of micro-voids less than 100 mu m that facilitated efficient oil-water separation. The superhydrophobic pellet exhibited oil-water separation efficiency higher than 90% for the oils and organic liquids like hexane, kerosene, diesel and coconut oil with excellent separation cycles around 30. The mechanically durable superhydrophobic SD - PS pellet could separate oil from muddy as well as warm water, which are more suitable for industrial applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Magnetic Wood-based Superhydrophobic Aerogel for Efficient Oil-Water Separation
    Junqing Chen
    Zede Yi
    Shiyu Fu
    Paper and Biomaterials, 2022, 7 (02) : 56 - 66
  • [2] Design and fabrication of polydopamine based superhydrophobic fabrics for efficient oil-water separation
    Zhang, Jixi
    Zhang, Ligui
    Gong, Xiao
    SOFT MATTER, 2021, 17 (27) : 6542 - 6551
  • [3] A facile preparation of superhydrophobic halloysite-based meshes for efficient oil-water separation
    Guo, Danyi
    Chen, Jiahui
    Hou, Kun
    Xu, Shouping
    Cheng, Jiang
    Wen, Xiufang
    Wang, Shuangfeng
    Huang, Chaoyun
    Pi, Pihui
    APPLIED CLAY SCIENCE, 2018, 156 : 195 - 201
  • [4] Superhydrophobic polyurethane sponges modified by sepiolite for efficient oil-water separation
    Pang, Yao
    Yu, Zongxue
    Chen, Legang
    Chen, Haidong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 627
  • [5] Preparation of superhydrophobic copper mesh for highly efficient oil-water separation
    Pan, Jie
    Yu, Leilei
    Huang, Wenheng
    Cao, Kun
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (01):
  • [6] Simple preparation of superhydrophobic copper foam for efficient oil-water separation
    Cai, Wen
    Ke, Qiang
    Feng, Mingyue
    Ma, Yong
    Kang, Antai
    Jiang, Min
    Fang, Shenwen
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 65
  • [7] Bionic silanized cellulose superhydrophobic paper for efficient oil-water separation
    Ning, Shenghui
    Tian, Guangyi
    Yang, Fuchao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 353
  • [8] Superhydrophobic MOF based materials and their applications for oil-water separation
    Liu, Yijun
    Lin, Zhengda
    Luo, Yang
    Wu, Rui
    Fang, Rui
    Umar, Ahmad
    Zhang, Zhongming
    Zhao, Zhiying
    Yao, Jie
    Zhao, Shuaifei
    JOURNAL OF CLEANER PRODUCTION, 2023, 420
  • [9] Magnetoactive Superhydrophobic Foams for Oil-Water Separation
    Calcagnile, Paola
    Fragouli, Despina
    Bayer, Ilker S.
    Anyfantis, George C.
    Athanassiou, Athanassia
    ADAPTIVE, ACTIVE AND MULTIFUNCTIONAL SMART MATERIALS SYSTEMS, 2013, 77 : 159 - 164
  • [10] Superhydrophobic microporous membrane based on modified microfibrillated cellulose framework for efficient oil-water separation
    Zhu, Yuxin
    Zhang, Ting
    Liu, Hong
    Jin, Chenkai
    Feng, Chengqi
    Huang, Juncheng
    Na, Haining
    Zhu, Jin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 279