A predictive electrochemical model for weld metal hydrogen pickup in underwater wet welds

被引:14
作者
de Medeiros, RC
Liu, S
机构
[1] Brazilian Fdn Welding TEchnol, BR-22271000 Rio De Janeiro, Brazil
[2] Colorado Sch Mines, Ctr Welding Joining & Coatings Res, Golden, CO 80401 USA
来源
JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME | 1998年 / 120卷 / 04期
关键词
D O I
10.1115/1.2829547
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Weld metal hydrogen pickup in underwater wet welding is severe due to the presence and dissociation of water surrounding the welding are. This undesirable behavior can be minimized, however, with the use of oxidizing-type electrodes. The purpose of this investigation has been placed on the fundamental understanding of the effect of hydrogen pickup by the slag on the weld metal diffusible hydrogen content in direct current, shielded metal are welding (SMAW)for both electrode-positive polarity (DCEP), and electrode-negative polarity (DCEN). To accomplish this purpose, 20 experimental oxidizing electrodes containing systematic ferric oxide (Fe2O3) additions, ranging from 0 to 70 wt. percent, to the pur coating were investigated. The mole fraction ratio of CaO/SiO2 in the fluxes ranged from 0.05 to 0.35, independent of the ferric oxide additions. Underwater bead-on-plate welds were deposited on ASTM A36 steel coupons at 0.27 m (city) water depth using a gravity feed system. Welding parameters were held constant throughout the experiments. Weld metal diffusible hydrogen content was determined using the mercury displacement method according to current AWS standard. To correlate weld metal hydrogen content with slag chemistry, the slag hydrogen contents were also determined. The measured diffusible hydrogen contents showed that Fe2O3 was effective in reducing weld metal hydrogen content. Higher hydrogen values were always related to lower Fe2O3 contents initially present in the flux, for instance, 71 mL/.100g (DCEP - 0 wt. percent Fe2O3) as compared to 31 mL/100g (DCEP - 36 wt. percent Fe2O3). Amazingly, diffusible hydrogen as low as 13 mL/100g was obtained with the use of DCEN polarity along with 53 wt. percent Fe2O3 in the flux coating. X-ray diffraction (XRD) conducted on different slags showed that the lower diffusible hydrogen values were always associated with the presence of fayalite (2FeO . SiO2). Complementing XRD analysis, Mossbauer spectroscopy analyses carried out on different slags showed that all ferric (Fe3+) oxide initially present in the slags had transformed to ferrous oxide (FeO), free or combined. Chemical analyses showed that weld metal hydrogen pickup was strongly dependent on the solubility of water in the slag systems. The total and diffusible hydrogen content in the weld metal increased monotonically with increasing slag hydrogen content. Finally, variations in weld metal hydrogen as well as slag hydrogen content with both polarity and iron oxide content in the slag were successfully predicted using an electrochemical model that describes the slag/metal interface equilibrium In this investigation, the slag/metal interface has been identified as responsible in controlling the weld metal hydrogen pickup. The model assumed that hydrogen was present in the slag as (OH) - ions and that FeO displayed ideal solution behavior.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 17 条
[1]  
*AM WELD SOC, 1993, A4393 ANSIAWS
[2]  
BLANDER M, 1986, P INT C TRENDS WELD, P363
[3]  
EASTERLING KE, 1992, INTRO PHYSICAL METAL
[4]  
FORNO AEJ, 1971, J IRON STEEL I, V209, P966
[5]  
FROST RH, 1983, MODELING CASTING WEL, V2, P279
[6]  
GOOCH TG, 1983, METAL CONSTRUCTI MAR, P164
[7]  
ITERRANTE CG, 1964, WELDING J RES S, V43, pS145
[8]  
KIM JH, 1990, WELDING J DEC, pS446
[9]  
Nobrega AF, 1981, THESIS FEDERAL U RIO
[10]  
Pope A. M., 1995, P 14 INT C OFFSH MEC