SHAPE RESTORATION FOR ROBUST TANGENT PRINCIPAL COMPONENT ANALYSIS

被引:0
|
作者
Abboud, Michel [1 ]
Benzinou, Abdesslam [1 ]
Nasreddine, Kamal [1 ]
Jazar, Mustapha [2 ]
机构
[1] UEB, ENIB, UMR CNRS 6285, Lab STICC, F-29238 Brest, France
[2] Lebanese Univ, LaMA, Tripoli, Lebanon
来源
5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, THEORY, TOOLS AND APPLICATIONS 2015 | 2015年
关键词
Shape analysis; robust statistics; shape space; Tangent PCA; OUTLIER DETECTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shape outliers can seriously affect the statistical analysis of the shape variations usually performed by the Principal Component Analysis PCA. This paper presents an algorithm for outliers detection and shape restoration as a new strategy for robust statistical shape analysis. The proposed framework is founded on an elastic metric in the shape space to cope with the nonlinear shape variability. The main contribution of this work is then a formulation of a robust PCA which describes main variations associated to correct shapes without outlier effects. The efficiency of this approach is demonstrated by an evaluation carried out on HAND-Kimia and HEART-Kimia databases.
引用
收藏
页码:473 / 478
页数:6
相关论文
共 50 条
  • [1] A robust tangent PCA via shape restoration for shape variability analysis
    Abboud, Michel
    Benzinou, Abdesslam
    Nasreddine, Kamal
    PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (02) : 653 - 671
  • [2] A robust tangent PCA via shape restoration for shape variability analysis
    Michel Abboud
    Abdesslam Benzinou
    Kamal Nasreddine
    Pattern Analysis and Applications, 2020, 23 : 653 - 671
  • [3] ROBUST STATISTICAL SHAPE ANALYSIS BASED ON THE TANGENT SHAPE SPACE
    Abboud, Michel
    Benzinou, Abdesslam
    Nasreddine, Kamal
    Jazar, Mustapha
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3520 - 3524
  • [4] Robust Bayesian functional principal component analysis
    Zhang, Jiarui
    Cao, Jiguo
    Wang, Liangliang
    STATISTICS AND COMPUTING, 2025, 35 (02)
  • [5] ROBUST PRINCIPAL COMPONENT ANALYSIS BY PROJECTION PURSUIT
    XIE, YL
    WANG, JH
    LIANG, YZ
    SUN, LX
    SONG, XH
    YU, RQ
    JOURNAL OF CHEMOMETRICS, 1993, 7 (06) : 527 - 541
  • [6] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [7] Robust Principal Component Analysis of Data with Missing Values
    Karkkainen, Tommi
    Saarela, Mirka
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 140 - 154
  • [8] The art of centering without centering for robust principal component analysis
    Wan, Guihong
    He, Baokun
    Schweitzer, Haim
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (02) : 699 - 724
  • [9] Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
    Rahmani, Mostafa
    Atia, George K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (23) : 6260 - 6275
  • [10] The art of centering without centering for robust principal component analysis
    Guihong Wan
    Baokun He
    Haim Schweitzer
    Data Mining and Knowledge Discovery, 2024, 38 (2) : 699 - 724