Analytical estimation of the maximal Lyapunov exponent in oscillator chains

被引:6
作者
Dauxois, T
Ruffo, S
Torcini, A
机构
[1] Dipartimento Energet S Stecco, I-50139 Florence, Italy
[2] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[3] Ecole Normale Super Lyon, Phys Lab, CNRS, URA 1325, F-69364 Lyon, France
来源
JOURNAL DE PHYSIQUE IV | 1998年 / 8卷 / P6期
关键词
D O I
10.1051/jp4:1998620
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analytical expression for the maximal Lyapunov exponent lambda(1) in generalized Fermi-Pasta-Ulam oscillator chains is obtained. The derivation is based on the calculation of modulational instability growth rates for some unstable periodic orbits. The result is compared with numerical simulations and the agreement is good over a wide range of energy densities epsilon. At very high energy density the power law scaling of lambda(1) with epsilon can be also obtained by simple dimensional arguments, assuming that the system is ruled by a single time scale. Finally, we argue that for repulsive and hard fore potentials in one dimension lambda(1) similar to root epsilon at large epsilon.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 30 条
[1]   NEARLY SEPARABLE BEHAVIOR OF FERMI-PASTA-ULAM CHAINS THROUGH THE STOCHASTICITY THRESHOLD [J].
ALABISO, C ;
CASARTELLI, M ;
MARENZONI, P .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (1-2) :451-471
[2]  
[Anonymous], [No title captured]
[3]  
Balucani U., 1994, DYNAMICS LIQUID STAT
[4]   COMMENT ON RELIABILITY OF TODA CRITERION FOR EXISTENCE OF A STOCHASTIC TRANSITION [J].
BENETTIN, G ;
BRAMBILLA, R ;
GALGANI, L .
PHYSICA A, 1977, 87 (02) :381-390
[5]  
BERMAN GP, 1984, ZH EKSP TEOR FIZ, V60, P1116
[6]   ANHARMONIC CHAIN WITH LENNARD-JONES INTERACTION [J].
BOCCHIERI, P ;
SCOTTI, A ;
BEARZI, B ;
LOINGER, A .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (05) :2013-+
[7]   GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS [J].
CASETTI, L ;
LIVI, R ;
PETTINI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (03) :375-378
[8]  
CRETEGNY T, 1997, UNPUB PHYSICA D
[9]  
Crisanti A., 1993, SPRINGER SERIES SOLI, DOI DOI 10.1007/978-3-642-84942-8
[10]   Modulational instability: First step towards energy localization in nonlinear lattices [J].
Daumont, I ;
Dauxois, T ;
Peyrard, M .
NONLINEARITY, 1997, 10 (03) :617-630