Reinforcing effect of single-wall carbon nanotubes on the LiNi0.6CO0.2Mn0.2O2 composite cathode for high-energy-density all-solid-state Li-ion batteries

被引:26
作者
Woo, Min-Hong [1 ]
Didwal, Pravin N. [2 ]
Kim, Hee-Joong [1 ]
Lim, Jin-Sub [1 ]
Nguyen, An-Giang [2 ]
Jin, Chang-Soo [3 ]
Chang, Duck Rye [1 ]
Park, Chan-Jin [2 ]
机构
[1] Korea Inst Ind Technol, Appl Opt & Energy Res Grp, 208-6 Cheomdangwagiro, Gwangju 61012, South Korea
[2] Chonnam Natl Univ, Dept Mat Sci & Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
[3] Korea Inst Energy Res, 152 Gajeong Ro, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
LiNi(0.6)CO(0.2)Mn(0.2)O(2 )cathode; Single wall carbon nanotube; All-solid-state Li-ion batteries; High energy density; LITHIUM; ELECTRODE; CAPACITY; NI; PERFORMANCE; ADDITIVES; OXIDE;
D O I
10.1016/j.apsusc.2021.150934
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing the effective electronic transportation pathways and high loading mass of cathode are the challenges for high energy density solid-state batteries. We successfully enhanced significantly the electrochemical characteristics of all-solid-state Li-ion battery (ASSLIB) composed of graphite/SiOx anode, PVDF-HFP/Al2O3 based composite solid polymer electrolyte (CSPE), and LiNi0.6CO0.2Mn0.2O2 cathode with high proportion of 96.94 wt% in cathode by employing only small amount (0.06 wt%) of SWCNT in electrodes. The Li/CSPE/NCM@CNT cell maintained a capacity of 2.31 mAh cm(-2) at rate of 0.5C with a capacity retention of similar to 93% over 50 cycles. Moreover, The Li/CSPE/G-SiOx@CNT cell delivered an areal charge capacity of 3.7 mAh cm(-2) at a rate of 0.5C. Furthermore, the ASSLIBs with a high cathode mass loading of 36.4 mg cm(-2) delivered a high areal capacity of 4.04 mAh cm(-2) and successfully operated for longer than 300 cycles at rate of 0.5C. The ASSLIBs show excellent cyclability with capacity retention of similar to 80% and coulombic efficiency of approximately 100%, even at a considerably high cathode mass loading of 36.4 mg cm(-2) at a rate of 0.5C. The SWCNT form a conductive network throughout the electrodes by providing prolonged electron transport pathways and enhance the overall electrochemical properties of ASSLIBs.
引用
收藏
页数:12
相关论文
共 54 条
[1]  
Ammundsen B, 2001, ADV MATER, V13, P943, DOI 10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO
[2]  
2-J
[3]   Thermodynamic Aspects of Cathode Coatings for Lithium-Ion Batteries [J].
Aykol, Muratahan ;
Kirklin, Scott ;
Wolverton, C. .
ADVANCED ENERGY MATERIALS, 2014, 4 (17)
[4]   There and Back Again-The Journey of LiNiO2 as a Cathode Active Material [J].
Bianchini, Matteo ;
Roca-Ayats, Maria ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10434-10458
[5]   Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether [J].
Cha, Ji Hye ;
Didwal, Pravin N. ;
Kim, Ju Min ;
Chang, Duck Rye ;
Park, Chan-Jin .
JOURNAL OF MEMBRANE SCIENCE, 2020, 595
[6]   An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries [J].
Didwal, Pravin N. ;
Singhbabu, Y. N. ;
Verma, Rakesh ;
Sung, Bong-Jun ;
Lee, Gwi-Hak ;
Lee, Jong-Sook ;
Chang, Duck Rye ;
Park, Chan-Jin .
ENERGY STORAGE MATERIALS, 2021, 37 :476-490
[7]   Synthesis of 3-dimensional interconnected porous Na3V2(PO4)3@C composite as a high-performance dual electrode for Na-ion batteries [J].
Didwal, Pravin N. ;
Verma, Rakesh ;
Min, Chan-Woo ;
Park, Chan-Jin .
JOURNAL OF POWER SOURCES, 2019, 413 :1-10
[8]   Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications [J].
Endo, M ;
Kim, YA ;
Hayashi, T ;
Nishimura, K ;
Matusita, T ;
Miyashita, K ;
Dresselhaus, MS .
CARBON, 2001, 39 (09) :1287-1297
[9]   Recent developments in cathode materials for lithium ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :939-954
[10]   Microdisplacement measurement using a liquid-delay-line oscillator [J].
Fujita, T ;
Toda, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2003, 42 (9B) :6131-6134