Twin-model framework development for a comprehensive battery lifetime prediction validated with a realistic driving profile

被引:22
作者
Hosen, Md Sazzad [1 ]
Kalogiannis, Theodoros [1 ]
Youssef, Rekabra [1 ]
Karimi, Danial [1 ]
Behi, Hamidreza [1 ]
Jin, Lu [2 ]
Van Mierlo, Joeri [1 ]
Berecibar, Maitane [1 ]
机构
[1] Vrije Univ Brussel, MOBI Res Grp, Battery Innovat Ctr, Pl Laan 2, B-1050 Brussels, Belgium
[2] Global Energy Interconnect Res Inst Europe GmbH, Berlin, Germany
基金
欧盟地平线“2020”;
关键词
battery aging; capacity fade; lifetime model; real-life validation; resistance growth; LI-ION BATTERIES; AGING MODEL; PERFORMANCE; STATE; CELL;
D O I
10.1002/ese3.973
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion technologies have become the most attractive and selected choice for battery electric vehicles. However, the understanding of battery aging is still a complex and nonlinear experience which is critical to the modeling methodologies. In this work, a comprehensive lifetime modeling twin framework following semi-empirical methodology has been developed to predict the crucial degradation outputs accurately in terms of capacity fade and resistance increase. The constructed model considers all the relevant aging influential factors for commercial nickel manganese cobalt (NMC) Li-ion cells based on long-term laboratory-level investigation and combines both the cycle life and the calendar life aspects. To demonstrate robustness, the model is validated with a real-life worldwide harmonized light-duty test cycle (WLTC). The model can precisely predict the capacity fade and the internal resistance growth with a root-mean-squared error (RMSE) of 1.31% and 0.56%, respectively. The developed model can be used as an advanced online tool forecasting the lifetime based on dynamic profiles.
引用
收藏
页码:2191 / 2201
页数:11
相关论文
共 31 条
[1]   Lithium battery aging model based on Dakin's degradation approach [J].
Baghdadi, Issam ;
Briat, Olivier ;
Deletage, Jean-Yves ;
Gyan, Philippe ;
Vinassa, Jean-Michel .
JOURNAL OF POWER SOURCES, 2016, 325 :273-285
[2]   A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J].
Barre, Anthony ;
Deguilhem, Benjamin ;
Grolleau, Sebastien ;
Gerard, Mathias ;
Suard, Frederic ;
Riu, Delphine .
JOURNAL OF POWER SOURCES, 2013, 241 :680-689
[3]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[4]  
Berecibar M, 2019, NATURE, V568, P325, DOI 10.1038/d41586-019-01138-1
[5]   A combined thermo-electric resistance degradation model for nickel manganese cobalt oxide based lithium-ion cells [J].
de Hoog, Joris ;
Jaguemont, Joris ;
Nikolian, Alexandros ;
Van Mierlo, Joeri ;
Van Den Bossche, Peter ;
Omar, Noshin .
APPLIED THERMAL ENGINEERING, 2018, 135 :54-65
[6]   Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation [J].
de Hoog, Joris ;
Timmermans, Jean-Marc ;
Ioan-Stroe, Daniel ;
Swierczynski, Maciej ;
Jaguemont, Joris ;
Goutam, Shovon ;
Omar, Noshin ;
Van Mierlo, Joeri ;
Van den Bossche, Peter .
APPLIED ENERGY, 2017, 200 :47-61
[7]   Influence of operational condition on lithium plating for commercial lithium-ion batteries - Electrochemical experiments and post-mortem-analysis [J].
Ecker, Madeleine ;
Sabet, Pouyan Shafiei ;
Sauer, Dirk Uwe .
APPLIED ENERGY, 2017, 206 :934-946
[8]   Performance comparison of four lithium-ion battery technologies under calendar aging [J].
Eddahech, Akram ;
Briat, Olivier ;
Vinassa, Jean-Michel .
ENERGY, 2015, 84 :542-550
[9]   Behavior and state-of-health monitoring of Li-ion batteries using impedence spectroscopy and recurrent neural networks [J].
Eddahech, Akram ;
Briat, Olivier ;
Bertrand, Nicolas ;
Deletage, Jean-Yves ;
Vinassa, Jean-Michel .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 42 (01) :487-494
[10]  
Fermin-Cueto P., 2020, ENERGY AI, V1, P100006, DOI DOI 10.1016/J.EGYAI.2020.100006