Spectroscopic and quantum chemical study on a non-linear optical material 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl]phenyl4-methylbenzene-1-sulfonate

被引:4
|
作者
Kumar, Rajesh [1 ,2 ]
Karthick, T. [3 ]
Srivastava, Anubha [1 ]
Gangopadhyay, Debraj [1 ,4 ]
Parol, Vinay [5 ]
Tandon, Poonam [1 ]
Gupta, Archana [2 ]
Kumar, Amit [2 ]
Bhat, K. Subrahmanya [6 ]
机构
[1] Univ Lucknow, Dept Phys, Lucknow 226007, Uttar Pradesh, India
[2] MJP Rohilkhand Univ, Fac Engn & Technol, Dept Appl Phys, Bareilly, Uttar Pradesh, India
[3] SASTRA Deemed Univ, Sch Elect & Elect Engn, Dept Phys, Thanjavur 613401, Tamil Nadu, India
[4] Czech Acad Sci, Inst Organ Chem & Biochem, Flemingovo Namesti 2, Prague 16610 6, Czech Republic
[5] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Phys, Manipal 576104, India
[6] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Chem, Manipal 576104, India
关键词
Chalcone derivative; Non-linear optical response; NMR chemical shifts; Electronic transitions; Vibrational contribution; 1ST-ORDER MOLECULAR HYPERPOLARIZABILITY; POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; CENTER-DOT-O; FT-RAMAN; AB-INITIO; VIBRATIONAL ANALYSIS; ORBITAL METHODS; IR; SPECTRA;
D O I
10.1016/j.molstruc.2021.131540
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chalcone derivatives are known for their characteristic non-linear optical efficiency. In the present work, the relation between the molecular structure and non-linear optical properties of a synthesized chalcone derivative 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate (4TPMS) have been investigated by combined experimental and theoretical approaches. The title compound 4TPMS was characterized by spectroscopic techniques viz. Raman, FT-IR, UV-vis, and H-1 NMR. Further, the experimental findings were validated by quantum chemical computations. The crystalline geometry of 4TPMS was optimized to energy minima by employing density functional theory (DFT) with B3LYP/6-311++G(d,p) approximation level. Harmonic vibrational frequencies were calculated and the spectral assignments have been done by potential energy distribution (PED) analysis. Significant non-linear optical (NLO) responses of chalcone are mainly caused by charge delocalization between lone pair and antibonding molecular orbitals within the molecule. Hence, natural bond orbital (NBO) was performed to analyze the charge delocalization along with the stability of the molecule. The population analysis based on Charges from Electrostatic Potentials using a Grid based method (CHELPG) was employed to understand the electrophilic/nucleophilic reaction sites. Moreover, the time-dependent density functional theory (TD-DFT) was employed to predict the energies, absorption wavelengths (lambda(max)) and oscillator strengths (f) of the electronic transitions. The TD-DFT calculation successfully reproduces the experimental UV-Vis spectrum of 4TPMS. The chemical shifts observed in H-1-NMR and the calculated GIAO shielding tensors also showed good agreement. A vibrational contribution to the NLO activity and the effect of charge delocalization on the NLO response were illustrated by comparing the similar kind of chalcone derivatives. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Synthesis, computational and spectroscopic analysis on (E)-(4-(2-(benzo[d]thiazol-2-yl)hydrazono)-3-methyl-2,6-diphenylpiperidine-1-yl)(phenyl)methanone using DFT approach
    Rajaraman, D.
    Sundararajan, G.
    Kamaraj, A.
    Saleem, H.
    Krishnasamy, K.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2015, 151 : 480 - 489
  • [32] Vibrational and structural observations and molecular docking study on 1-{3-(4-chlorophenyl)-5-[4-(propan-2-yl)pheny1]-4,5-dihydro-1H-p-pyrazol-1-yl}-ethanone
    Parveen, Shana S.
    Al-Alshaikh, Monirah A.
    Panicker, C. Yohannan
    El-Emam, Ali A.
    Narayana, B.
    Saliyan, Vinutha V.
    Sarojini, B. K.
    Van Alsenoy, C.
    JOURNAL OF MOLECULAR STRUCTURE, 2016, 1112 : 136 - 146
  • [33] Molecular structure, nonlinear optical studies and spectroscopic analysis of chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]1-(3-bromophenyl) prop-2-en-1-one by DFT calculations
    Kumar, Amit
    Kumar, Rajesh
    Gupta, Archana
    Tandon, Poonam
    D'silva, E. Deepak
    JOURNAL OF MOLECULAR STRUCTURE, 2017, 1150 : 166 - 178
  • [34] Theoretical and antimicrobial activity study for ethyl{4-[3-(1H-imidazole-1-yl)propyl]-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl}acetate
    Suleymanoglu, Nevin
    Unver, Yasemin
    Ustabas, Resat
    Direkel, Sahin
    Alpaslan, Yelda Bingol
    SPECTROSCOPY LETTERS, 2017, 50 (02) : 96 - 101
  • [35] Structural and spectroscopic characterization of a novel potential chemotherapeutic agent 3-(1-adamantyl)-1-{[4-(2-methoxyphenyl)piperazin-1-yl]methyl}-4-methyl-1H-1,2,4-triazole-5(4H)-thione by first principle calculations
    El-Emam, Ali A.
    Al-Tamimi, Abdul-Malek S.
    Al-Rashood, Khalid A.
    Misra, Hriday N.
    Narayan, Vijay
    Prasad, Onkar
    Sinha, Leena
    JOURNAL OF MOLECULAR STRUCTURE, 2012, 1022 : 49 - 60
  • [36] Structural and spectroscopic investigation of the chalcones (E)-1-(4-aminophenyl)-3-(4′-ethoxyphenyl)-prop-2-en-1-one and (E)-1-(aminophenyl)-3-(4′-methoxyphenyl)-prop-2-en-1-one
    Campos Lima, Igor Kleber
    de Sousa, Filipe Dantas
    de Morais Bento, Ana Joyce
    Cruz, Beatriz Goncalves
    da Silva, Priscila Teixeira
    Bandeira, Paulo Nogueira
    dos Santos, Helcio Silva
    Saraiva, Gilberto Dantas
    Honorato Barreto, Antonio Cesar
    Cavalcante Freire, Paulo de Tarso
    Rodrigues Teixeira, Alexandre Magno
    VIBRATIONAL SPECTROSCOPY, 2020, 110
  • [37] Synthesis, experimental and theoretical spectra, electronic and medicinal properties of 3-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)5-ethoxy-4H-1,2,4-triazole
    Titlin, M. B. Arthina
    Beena, T. R.
    Nikpassand, Mohammad
    Akman, Feride
    Khaled, J. M.
    Muthu, S.
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1319
  • [38] Synthesis, quantum mechanical calculations, molecular docking, Hirshfeld surface analysis and ADMET estimation studies of (E)-3-(anthracene-10-yl)-1-(napthalen-1-yl)prop-2-en-1-one
    Srinivasan, S.
    Hajam, Towseef Ahmad
    Sathish, S.
    Grewal, Ravneet Kaur
    JOURNAL OF MOLECULAR STRUCTURE, 2022, 1269
  • [39] Spectral Characteristics, DFT Exploration, Electronic Properties, Molecular Docking and Biological Activity of 2E-1-(3-Bromothiophene-2-yl)-3-(1, 3-Benzodioxol-5-yl)Prop-2-en-1-One Molecule
    Anitha, K.
    Nataraj, A.
    Narayana, Badiadka
    Karthick, T.
    POLYCYCLIC AROMATIC COMPOUNDS, 2023, 43 (08) : 6934 - 6952
  • [40] Vibrational spectroscopic characterization, electronic absorption, optical nonlinearity computation and terahertz investigation of (2E) 3-(4-ethoxyphenyl)-1-(3-bromophenyl) prop-2-en-1-one for NLO device fabricatin
    Singh, Pratibha
    Kumar, Amit
    Reena
    Gupta, Archana
    Patil, Parutagouda Shankaragouda
    Prabhu, Shriganesh
    Garde, C. S.
    JOURNAL OF MOLECULAR STRUCTURE, 2019, 1198