Stator Short-Circuit Diagnosis in Induction Motors Using Mutual Information and Intelligent Systems

被引:55
作者
Bazan, Gustavo Henrique [1 ,2 ]
Scalassara, Paulo Rogerio [3 ]
Endo, Wagner [3 ]
Goedtel, Alessandro [3 ]
Cunha Palacios, Rodrigo Henrique [3 ]
Godoy, Wagner Fontes [3 ]
机构
[1] Fed Inst Parana, Dept Control & Ind Proc, BR- 8640000 Jacarezinho, Brazil
[2] Univ Tecnol Fed Parana, Dept Elect Engn, BR-86300000 Cornelio Procopio, Brazil
[3] Univ Tecnol Fed Parana, Dept Elect & Comp Engn, BR-86300000 Cornelio Procopio, Brazil
关键词
Artificial neural networks (ANNs); decision trees (DTs); induction motors; mutual information (MI); stator winding fault detection; FAULT-DETECTION; WINDING FAULTS; TURN-FAULT; MACHINES; SIGNATURES;
D O I
10.1109/TIE.2018.2840983
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel approach for detection of stator short-circuit faults in three-phase induction motors. The method is based on two stages: feature extraction and classification by intelligent systems. First, mutual information is estimated from delayed stator current signals, which are used as inputs of C4.5 decision trees and multilayer perceptron neural networks in the second step. Several offline and online experimental tests are presented considering voltage unbalance, load torque variations, and 1% to 10% short-circuit levels. The obtained results corroborate the effectiveness of this new diagnostic approach.
引用
收藏
页码:3237 / 3246
页数:10
相关论文
共 40 条
  • [1] Evaluation of respiratory muscles activity by means of cross mutual information function at different levels of ventilatory effort
    Alonso, Joan Francesc
    Mananas, Miguel A.
    Hoyer, Dirk
    Topor, Zbigniew L.
    Bruce, Eugene N.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (09) : 1573 - 1582
  • [2] [Anonymous], 2009, ACM SIGKDD explorations newsletter, DOI 10.1145/1656274.1656278
  • [3] Fault Diagnosis of the Asynchronous Machines Through Magnetic Signature Analysis Using Finite-Element Method and Neural Networks
    Barzegaran, Mohammadreza
    Mazloomzadeh, Ali
    Mohammed, Osama A.
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2013, 28 (04) : 1064 - 1071
  • [4] An Empirical Demodulation for Electrical Fault Detection in Induction Motors
    Batista, Fabiano Bianchini
    Monteiro Lamim Filho, Paulo Cezar
    Pederiva, Robson
    Diniz Silva, Vinicius Augusto
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (03) : 559 - 569
  • [5] Advances in Diagnostic Techniques for Induction Machines
    Bellini, Alberto
    Filippetti, Fiorenzo
    Tassoni, Carta
    Capolino, Gerard-Andre
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (12) : 4109 - 4126
  • [6] Induction Motor Bearing Fault Analysis Using a Root-MUSIC Method
    Boudinar, Ahmed Hamida
    Benouzza, Noureddine
    Bendiabdellah, Azeddine
    Khodja, Mohammed-El-Amine
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2016, 52 (05) : 3851 - 3860
  • [7] New Expressions of Symmetrical Components of the Induction Motor Under Stator Faults
    Bouzid, Monia Ben Khader
    Champenois, Gerard
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (09) : 4093 - 4102
  • [8] Cover Thomas M, 2006, Elements of information theory
  • [9] A novel multi-agent approach to identify faults in line connected three-phase induction motors
    Cunha Palacios, Rodrigo H.
    da Silva, Ivan N.
    Goedtel, Alessandro
    Godoy, Wagner F.
    [J]. APPLIED SOFT COMPUTING, 2016, 45 : 1 - 10
  • [10] A comprehensive evaluation of intelligent classifiers for fault identification in three-phase induction motors
    Cunha Palacios, Rodrigo H.
    da Silva, Ivan Nunes
    Goedtel, Alessandro
    Godoy, Wagner F.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2015, 127 : 249 - 258