Effect of Carbonized 2-Methylnaphthalene on the Hydrogen Storage Performance of MgH2

被引:6
|
作者
Zhou, Shuhua [1 ]
Zhang, Wei [1 ]
Wang, Wenfeng [1 ]
Fu, Yaokun [1 ]
Yu, Han [1 ]
Zhang, Lu [1 ,2 ]
Song, Jianzheng [1 ]
Cheng, Ying [3 ]
Han, Shumin [1 ,2 ]
机构
[1] Yanshan Univ, Sch Environm & Chem Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[3] Hebei Univ Environm Engn, Qinhuangdao 066102, Hebei, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2021年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
magnesium hydride; hydrogen storage; 2-methylnaphthalene; dehydrogenation kinetics; hydrogenation kinetics; SORPTION KINETICS; MAGNESIUM; HYDRIDE; DEHYDROGENATION; ENERGY; NANOCOMPOSITES; NANOPARTICLES; SPECTROSCOPY; DESORPTION; MECHANISM;
D O I
10.1021/acsaem.1c02250
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mg-based hydride materials (MgH2) are in the spotlight of hydrogen storage due to their high gravimetric density. Yet, its large-scale utilization is limited by the poor thermodynamic stability and slow kinetics. Herein, we report a novel and straightforward way to prepare MgH2 with amorphous carbon by cosintering 2-methylnaphthalene (CMN) organics with pure Mg and a hydriding combustion synthesis method, where the amorphous carbon formed from the CMN not only improves the dehydrogenation/hydrogenation capacity but also enhances the kinetics of the Mg/MgH2 system. The dehydrogenation capacity of the CMN-MgH2 composite reaches 4.88 wt % of H-2 at 623 K, nearly 2 times of pure MgH2, and its onset dehydrogenation temperature decreases to 560 K, 90 K lower than that of pure MgH2; in addition, at a lower temperature of 473 K, the composite remarkably absorbs 4.54 wt % of H-2 within 42 s while the absorption is only 0.71 wt % H-2 for the pure MgH2. Moreover, the activation energy greatly decreases from 165.35 to 101.52 kJ/mol. Further research reveals that the evolution of hydrogenation changes from a three-dimensional diffusion process to a one-dimensional diffusion process, attributed to the formation of the amorphous carbon. This work is expected to provide inspiration to design and prepare effective additives for the improvement of hydrogen storage performance of Mg-based hydrides.
引用
收藏
页码:11505 / 11513
页数:9
相关论文
共 50 条
  • [1] The effect of K2SiF6 on the MgH2 hydrogen storage properties
    Ismail, M.
    Yahya, M. S.
    Sazelee, N. A.
    Ali, N. A.
    Yap, F. A. Halim
    Mustafa, N. S.
    JOURNAL OF MAGNESIUM AND ALLOYS, 2020, 8 (03) : 832 - 840
  • [2] MgH2-ZrFe2Hx nanocomposites for improved hydrogen storage characteristics of MgH2
    Shahi, Rohit R.
    Bhatanagar, Ashish
    Pandey, Sunita K.
    Shukla, Vivek
    Yadav, T. P.
    Shaz, M. A.
    Srivastava, O. N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (35) : 11506 - 11513
  • [3] Catalytic role of binary oxides (CuO and Al2O3) on hydrogen storage in MgH2
    Jubair, Ahammed
    Rahman, Md Akhlakur
    Khan, Md Maksudur Rahman
    Rahman, Md Wasikur
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2023, 42 (01)
  • [4] Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis
    Zhang, X. L.
    Liu, Y. F.
    Zhang, X.
    Hu, J. J.
    Gao, M. X.
    Pan, H. G.
    MATERIALS TODAY NANO, 2020, 9
  • [5] Transformation of Metallic Ti to TiH2 Phase in the Ti/MgH2 Composite and Its Influence on the Hydrogen Storage Behavior of MgH2
    Pukazhselvan, D.
    Sandhya, Karakkadparambil Sankaran
    Ramasamy, Devaraj
    Shaula, Aliaksandr
    Fagg, Duncan Paul
    CHEMPHYSCHEM, 2020, 21 (11) : 1195 - 1201
  • [6] Effect of CO on hydrogen storage performance of KF doped 2LiNH2 + MgH2 material
    Sun, Fei
    Yan, Min-yan
    Ye, Jian-hua
    Liu, Xiao-peng
    Jiang, Li-jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 616 : 47 - 50
  • [7] Microstructure and Hydrogen Storage Performance of Ball-Milled MgH2 Catalyzed by FeTi
    Revesz, Adam
    Paramonov, Roman
    Spassov, Tony
    Gajdics, Marcell
    ENERGIES, 2023, 16 (03)
  • [8] Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review
    Sadhasivam, T.
    Kim, Hee-Tak
    Jung, Seunghun
    Roh, Sung-Hee
    Park, Jeong-Hun
    Jung, Ho-Young
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 72 : 523 - 534
  • [9] Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling
    Imamura, Hayao
    Tanaka, Kenichi
    Kitazawa, Ichirou
    Sumi, Takeshi
    Sakata, Yoshihisa
    Nakayama, Noriaki
    Ooshima, Shinji
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 484 (1-2) : 939 - 942
  • [10] Review on Hydrogen Storage Performance of MgH2: Development and Trends
    Hou, Quanhui
    Yang, Xinglin
    Zhang, Jiaqi
    CHEMISTRYSELECT, 2021, 6 (07): : 1589 - 1606