Real-Time Robotic Grasping and Localization Using Deep Learning-Based Object Detection Technique

被引:0
|
作者
Farag, Mohannad [1 ]
Abd Ghafar, Abdul Nasir [1 ]
Alsibai, Mohammed Hayyan [2 ]
机构
[1] Univ Malaysia Pahang, Fac Engn Technol, Gambang 26300, Pahang, Malaysia
[2] Univ Sci & Technol, Fac Engn & Technol Int, Damascus, Syria
来源
2019 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS) | 2019年
关键词
deep learning; CNN; object detection; edge detection; real-time grasp detection; robot positioning; robot arm;
D O I
10.1109/i2cacis.2019.8825093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aims to increase the impact of computer vision on robotic positioning and grasping in industrial assembly lines. Real-time object detection and localization problem is addressed for robotic grasp-and-place operation using Selective Compliant Assembly Robot Arm (SCARA). The movement of SCARA robot is guided by deep learning-based object detection for grasp task and edge detection-based position measurement for place task. Deep Convolutional Neural Network (CNN) model, called KSSnet, is developed for object detection based on CNN Alexnet using transfer learning approach. SCARA training dataset with 4000 images of two object categories associated with 20 different positions is created and labeled to train KSSnet model. The position of the detected object is included in prediction result at the output classification layer. This method achieved the state-of-the-art results at 100% precision of object detection, 100% accuracy for robotic positioning and 100% successful real-time robotic grasping within 0.38 seconds as detection time. A combination of Zerocross and Canny edge detectors is implemented on a circular object to simplify the place task. For accurate position measurement, the distortion of camera lens is removed using camera calibration technique where the measured position represents the desired location to place the grasped object. The result showed that the robot successfully moved to the measured position with positioning Root Mean Square Error (0.361, 0.184) mm and 100% for successful place detection.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [21] Real-time Object Detection and Semantic Segmentation Hardware System with Deep Learning Networks
    Fang, Shaoxia
    Tian, Lu
    Wang, Junbin
    Liang, Shuang
    Xie, Dongliang
    Chen, Zhongmin
    Sui, Lingzhi
    Yu, Qian
    Sun, Xiaoming
    Shan, Yi
    Wang, Yu
    2018 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT 2018), 2018, : 392 - 395
  • [22] A Survey of Deep Learning-Based Object Detection
    Jiao, Licheng
    Zhang, Fan
    Liu, Fang
    Yang, Shuyuan
    Li, Lingling
    Feng, Zhixi
    Qu, Rong
    IEEE ACCESS, 2019, 7 : 128837 - 128868
  • [23] Deep Learning-Based Portable Image Analysis System for Real-Time Detection of Vespa velutina
    Jeon, Moon-Seok
    Jeong, Yuseok
    Lee, Jaesu
    Yu, Seung-Hwa
    Kim, Su-bae
    Kim, Dongwon
    Kim, Kyoung-Chul
    Lee, Siyoung
    Lee, Chang-Woo
    Choi, Inchan
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [24] Experimental Deep Learning Object Detection in Real-time Colonoscopies
    Ciobanu, Adrian
    Luca, Mihaela
    Barbu, Tudor
    Drug, Vasile
    Olteanu, Andrei
    Vulpoi, Radu
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [25] Object Detection in Robotic Applications for Real-time Localization Using Semi-Unknown Objects
    Astola, Pekka
    Aref, Mohammad M.
    Vihonen, Juho
    Mattila, Jouni
    Tabus, Ioan
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 682 - 687
  • [26] A deep learning-based approach for real-time rodent detection and behaviour classification
    J. Arturo Cocoma-Ortega
    Felipe Patricio
    Ilhuicamina Daniel Limon
    Jose Martinez-Carranza
    Multimedia Tools and Applications, 2022, 81 : 30329 - 30350
  • [27] Deep Learning-Based Method for Accurate Real-Time Seed Detection in Glass Bottle Manufacturing
    Bereciartua-Perez, Arantza
    Duro, Gorka
    Echazarra, Jone
    Javier Gonzalez, Francico
    Serrano, Alberto
    Irizar, Liher
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [28] Towards Real-Time Deep Learning-Based Network Intrusion Detection on FPGA
    Le Jeune, Laurens
    Goedeme, Toon
    Mentens, Nele
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY WORKSHOPS, ACNS 2021, 2021, 12809 : 133 - 150
  • [29] Deep learning-based real-time detection of novel pathogens during sequencing
    Bartoszewicz, Jakub M.
    Genske, Ulrich
    Renard, Bernhard Y.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [30] A deep learning-based approach for real-time rodent detection and behaviour classification
    Cocoma-Ortega, J. Arturo
    Patricio, Felipe
    Limon, Ilhuicamina Daniel
    Martinez-Carranza, Jose
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 30329 - 30350