Using deep Residual Networks to search for galaxy-Ly α emitter lens candidates based on spectroscopic selection

被引:15
作者
Li, Rui [1 ,2 ,3 ,4 ]
Shu, Yiping [5 ,6 ]
Su, Jianlin [7 ]
Feng, Haicheng [1 ,2 ,3 ,4 ]
Zhang, Guobao [1 ,2 ,3 ,4 ]
Wang, Jiancheng [1 ,2 ,3 ,4 ]
Liu, Hongtao [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Yunnan Observ, 396 Yangfangwang, Kunming 650216, Yunnan, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Ctr Astron Mega Sci, 20A Datun Rd, Beijing 100012, Peoples R China
[4] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, 396 Yangfangwang, Kunming 650216, Yunnan, Peoples R China
[5] Chinese Acad Sci, Purple Mt Observ, 2 West Beijing Rd, Nanjing 210008, Jiangsu, Peoples R China
[6] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[7] Sun Yat Sen Univ, Sch Math, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
gravitational lensing: strong; galaxies: structure; ACS SURVEY; AUTOMATIC DETECTION; STELLAR; SAMPLE;
D O I
10.1093/mnras/sty2708
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
More than 100 galaxy-scale strong gravitational lens systems have been found by searching for the emission lines coming from galaxies with redshifts higher than the lens galaxies. Based on this spectroscopic-selection method, we introduce the deep Residual Networks (ResNet; a kind of deep Convolutional Neural Networks) to search for the galaxy-Ly alpha emitter (LAE) lens candidates by recognizing the Ly alpha emission lines coming from high- redshift galaxies (2 < z < 3) in the spectra of early-type galaxies (ETGs) at middle redshift (z similar to 0.5). The spectra of the ETGs come from the Data Release 12 (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III). In this paper, we first build a 28 layers ResNet model, and then artificially synthesize 150 000 training spectra, including 140 000 spectra without Ly alpha lines and 10 000 ones with Ly alpha lines, to train the networks. After 20 training epochs, we obtain a near-perfect test accuracy at 0.995 4. The corresponding loss is 0.002 8 and the completeness is 93.6 per cent. We finally apply our ResNet model to our predictive data with 174 known lens candidates. We obtain 1232 hits including 161 of the 174 known candidates (92.5 per cent discovery rate). Apart from the hits found in other works, our ResNet model also find 536 new hits. We then perform several subsequent selections on these 536 hits and present five most believable lens candidates.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 41 条
[11]  
Gulcehre C, 2016, PR MACH LEARN RES, V48
[12]  
He K., 2015, P IEEE C COMPUTER VI, DOI DOI 10.1109/CVPR.2016.90
[13]   The lensed arc production efficiency of galaxy clusters: A comparison of matched observed and simulated samples [J].
Horesh, A ;
Ofek, EO ;
Maoz, D ;
Bartelmann, M ;
Meneghetti, M ;
Rix, HW .
ASTROPHYSICAL JOURNAL, 2005, 633 (02) :768-780
[14]   Measuring photometric redshifts using galaxy images and Deep Neural Networks [J].
Hoyle, B. .
ASTRONOMY AND COMPUTING, 2016, 16 :34-40
[15]   A gravitationally lensed water maser in the early Universe [J].
Impellizzeri, C. M. Violette ;
McKean, John P. ;
Castangia, Paola ;
Roy, Alan L. ;
Henkel, Christian ;
Brunthaler, Andreas ;
Wucknitz, Olaf .
NATURE, 2008, 456 (7224) :927-929
[16]   A PCA-based automated finder for galaxy-scale strong lenses [J].
Joseph, R. ;
Courbin, F. ;
Metcalf, R. B. ;
Giocoli, C. ;
Hartley, P. ;
Jackson, N. ;
Bellagamba, F. ;
Kneib, J. -P. ;
Koopmans, L. ;
Lemson, G. ;
Meneghetti, M. ;
Meylan, G. ;
Petkova, M. ;
Pires, S. .
ASTRONOMY & ASTROPHYSICS, 2014, 566
[17]   Star-galaxy classification using deep convolutional neural networks [J].
Kim, Edward J. ;
Brunner, Robert J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) :4463-4475
[18]   The Sloan Lens ACS Survey.: III.: The structure and formation of early-type galaxies and their evolution since z≈1 [J].
Koopmans, Leon V. E. ;
Treu, Tommaso ;
Bolton, Adam S. ;
Burles, Scott ;
Moustakas, Leonidas A. .
ASTROPHYSICAL JOURNAL, 2006, 649 (02) :599-615
[19]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[20]   A method to search for strong galaxy-galaxy lenses in optical imaging surveys [J].
Kubo, Jeffrey M. ;
Dell'Antonio, Ian P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 385 (02) :918-928