Semiparametric quantile regression with random censoring

被引:5
作者
Bravo, Francesco [1 ]
机构
[1] Univ York, Dept Econ, York YO10 5DD, N Yorkshire, England
关键词
Inverse probability of censoring; Local linear estimation; M-M algorithm; MEDIAN REGRESSION; NONPARAMETRIC-ESTIMATION; SURVIVAL ANALYSIS; MODELS; ESTIMATOR;
D O I
10.1007/s10463-018-0688-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation and inference in semiparametric quantile regression models when the response variable is subject to random censoring. The paper considers both the cases of independent and dependent censoring and proposes three iterative estimators based on inverse probability weighting, where the weights are estimated from the censoring distribution using the Kaplan-Meier, a fully parametric and the conditional Kaplan-Meier estimators. The paper proposes a computationally simple resampling technique that can be used to approximate the finite sample distribution of the parametric estimator. The paper also considers inference for both the parametric and nonparametric components of the quantile regression model. Monte Carlo simulations show that the proposed estimators and test statistics have good finite sample properties. Finally, the paper contains a real data application, which illustrates the usefulness of the proposed methods.
引用
收藏
页码:265 / 295
页数:31
相关论文
共 50 条
  • [41] Regression on Quantile Residual Life
    Jung, Sin-Ho
    Jeong, Jong-Hyeon
    Bandos, Hanna
    BIOMETRICS, 2009, 65 (04) : 1203 - 1212
  • [42] Testing and estimation in marker-set association study using semiparametric quantile regression kernel machine
    Kong, Dehan
    Maity, Arnab
    Hsu, Fang-Chi
    Tzeng, Jung-Ying
    BIOMETRICS, 2016, 72 (02) : 364 - 371
  • [43] QUANTILE REGRESSION FOR COMPETING RISKS DATA WITH MISSING CAUSE OF FAILURE
    Sun, Yanqing
    Wang, Huixia Judy
    Gilbert, Peter B.
    STATISTICA SINICA, 2012, 22 (02) : 703 - 728
  • [44] Quantile Regression for Left-Truncated Semicompeting Risks Data
    Li, Ruosha
    Peng, Limin
    BIOMETRICS, 2011, 67 (03) : 701 - 710
  • [45] Non Parametric Regression Quantile Estimation for Dependent Functional Data under Random Censorship: Asymptotic Normality
    Horrigue, Walid
    Said, Elias Ould
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (20) : 4307 - 4332
  • [46] Efficient importance sampling imputation algorithms for quantile and composite quantile regression
    Cheng, Hao
    STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (03) : 339 - 356
  • [47] Quantile regression with doubly censored data
    Lin, Guixian
    He, Xuming
    Portnoy, Stephen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 797 - 812
  • [48] On kernel smoothing for extremal quantile regression
    Daouia, Abdelaati
    Gardes, Laurent
    Girard, Stephane
    BERNOULLI, 2013, 19 (5B) : 2557 - 2589
  • [49] ON COMPARISON OF ESTIMATION METHODS IN QUANTILE REGRESSION
    Woo, Song Jea
    Kang, Kee-Hoon
    ADVANCES AND APPLICATIONS IN STATISTICS, 2018, 52 (03) : 203 - 213
  • [50] Regularized linear censored quantile regression
    Son, Minjeong
    Choi, Taehwa
    Shin, Seung Jun
    Jung, Yoonsuh
    Choi, Sangbum
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 589 - 607