Semiparametric quantile regression with random censoring

被引:5
作者
Bravo, Francesco [1 ]
机构
[1] Univ York, Dept Econ, York YO10 5DD, N Yorkshire, England
关键词
Inverse probability of censoring; Local linear estimation; M-M algorithm; MEDIAN REGRESSION; NONPARAMETRIC-ESTIMATION; SURVIVAL ANALYSIS; MODELS; ESTIMATOR;
D O I
10.1007/s10463-018-0688-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation and inference in semiparametric quantile regression models when the response variable is subject to random censoring. The paper considers both the cases of independent and dependent censoring and proposes three iterative estimators based on inverse probability weighting, where the weights are estimated from the censoring distribution using the Kaplan-Meier, a fully parametric and the conditional Kaplan-Meier estimators. The paper proposes a computationally simple resampling technique that can be used to approximate the finite sample distribution of the parametric estimator. The paper also considers inference for both the parametric and nonparametric components of the quantile regression model. Monte Carlo simulations show that the proposed estimators and test statistics have good finite sample properties. Finally, the paper contains a real data application, which illustrates the usefulness of the proposed methods.
引用
收藏
页码:265 / 295
页数:31
相关论文
共 50 条
  • [31] Quantile regression models for current status data
    Ou, Fang-Shu
    Zeng, Donglin
    Cai, Jianwen
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 178 : 112 - 127
  • [32] Nonparametric quantile regression for twice censored data
    Volgushew, Stanislav
    Dette, Holger
    BERNOULLI, 2013, 19 (03) : 748 - 779
  • [33] Interval-Censored Linear Quantile Regression
    Choi, Taehwa
    Park, Seohyeon
    Cho, Hunyong
    Choi, Sangbum
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025, 34 (01) : 187 - 198
  • [34] Semiparametric analysis of survival data with left truncation and right censoring
    Shen, Pao-Sheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4417 - 4432
  • [35] CENSORED QUANTILE REGRESSION WITH COVARIATE MEASUREMENT ERRORS
    Ma, Yanyuan
    Yin, Guosheng
    STATISTICA SINICA, 2011, 21 (02) : 949 - 971
  • [36] Penalized semiparametric Cox regression model on XGBoost and random survival forests
    Wang, Yating
    Su, Jinxia
    Zhao, Xuejing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (07) : 3095 - 3103
  • [37] QUANTILE CALCULUS AND CENSORED REGRESSION
    Huang, Yijian
    ANNALS OF STATISTICS, 2010, 38 (03) : 1607 - 1637
  • [38] Functional Censored Quantile Regression
    Jiang, Fei
    Cheng, Qing
    Yin, Guosheng
    Shen, Haipeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 931 - 944
  • [39] Quantile regression methods for censored gap time data
    Cheng, Jung-Yu
    Tzeng, Shinn-Jia
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (17) : 5154 - 5165
  • [40] Self-consistent estimation of censored quantile regression
    Peng, Limin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) : 368 - 379