2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly

被引:34
作者
Wang, Xuanye [1 ]
Christopher, Jason W. [2 ]
Swan, Anna K. [1 ,2 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Photon Ctr, 8 St Marys St, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
LINE-SHAPE; SPECTROSCOPY;
D O I
10.1038/s41598-017-13769-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D(1) and 2D(2) split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Optical Probing of the Electronic Interaction between Graphene and Hexagonal Boron Nitride [J].
Ahn, Gwanghyun ;
Kim, Hye Ri ;
Ko, Taeg Yeoung ;
Choi, Kyoungjun ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Hong, Byung Hee ;
Ryu, Sunmin .
ACS NANO, 2013, 7 (02) :1533-1541
[2]   Intrinsic Line Shape of the Raman 2D-Mode in Freestanding Graphene Monolayers [J].
Berciaud, Stephane ;
Li, Xianglong ;
Htoon, Han ;
Brus, Louis E. ;
Doorn, Stephen K. ;
Heinz, Tony F. .
NANO LETTERS, 2013, 13 (08) :3517-3523
[3]   Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers [J].
Berciaud, Stephane ;
Ryu, Sunmin ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2009, 9 (01) :346-352
[4]   Direct Imaging of Charged Impurity Density in Common Graphene Substrates [J].
Burson, Kristen M. ;
Cullen, William G. ;
Adam, Shaffique ;
Dean, Cory R. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, Philip ;
Fuhrer, Michael S. .
NANO LETTERS, 2013, 13 (08) :3576-3580
[5]   Renormalization of the Graphene Dispersion Velocity Determined from Scanning Tunneling Spectroscopy [J].
Chae, Jungseok ;
Jung, Suyong ;
Young, Andrea F. ;
Dean, Cory R. ;
Wang, Lei ;
Gao, Yuanda ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Hone, James ;
Shepard, Kenneth L. ;
Kim, Phillip ;
Zhitenev, Nikolai B. ;
Stroscio, Joseph A. .
PHYSICAL REVIEW LETTERS, 2012, 109 (11)
[6]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[7]   Raman spectroscopy on isolated single wall carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Jorio, A ;
Souza, AG ;
Saito, R .
CARBON, 2002, 40 (12) :2043-2061
[8]  
Elias DC, 2011, NAT PHYS, V7, P701, DOI [10.1038/NPHYS2049, 10.1038/nphys2049]
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57