Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations

被引:41
作者
Pausader, Benoit [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
fourth-order wave equations; beam equation; scattering;
D O I
10.1016/j.jde.2007.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate scattering theory in the energy space for fourth-order nonlinear defocusing wave equations and prove the Levandosky-Strauss conjecture stating that scattering holds true for such equations and arbitrary initial data. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 278
页数:42
相关论文
共 33 条
[1]  
[Anonymous], 2006, CBMS REGIONAL C SERI, DOI DOI 10.1090/EBMS/106
[2]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[3]   Simulation of wave interactions and turbulence in one-dimensional water waves [J].
Berger, KM ;
Milewski, PA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (04) :1121-1140
[4]   Nonlinear wave interactions in nonlinear nonintegrable systems [J].
Berloff, NG ;
Howard, LN .
STUDIES IN APPLIED MATHEMATICS, 1998, 100 (03) :195-213
[5]   ON LP-DECAY AND SCATTERING FOR NON-LINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
MATHEMATICA SCANDINAVICA, 1982, 51 (02) :333-360
[6]   RESONANT INTERACTIONS BETWEEN WAVES - THE CASE OF DISCRETE OSCILLATIONS [J].
BRETHERTON, FP .
JOURNAL OF FLUID MECHANICS, 1964, 20 (03) :457-479
[7]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[8]  
CAZENAVE T, 1989, LECT NOTES MATH, V1394, P18
[9]  
Cazenave T., 2003, Semilinear Schrodinger equations, V10
[10]  
Cazenave T., 1998, OXFORD LECT SER MATH