IDENTIFICATION OF FUNCTIONAL CORTICO-SUBCORTICAL NETWORKS IN RESTING-STATE FMRI: A COMBINED NEDICA AND GLM ANALYSIS

被引:0
|
作者
Malherbe, C. [1 ]
Pelegrini-Issac, M. [1 ]
Perlbarg, V. [1 ]
Lehericy, S. [1 ]
Marrelec, G. [1 ]
Benali, H. [1 ]
机构
[1] INSERM, Paris, France
关键词
fMRI; functional connectivity; functional networks; basal ganglia; BASAL GANGLIA; CONNECTIVITY;
D O I
10.1109/ISBI.2010.5490202
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
While the cortical components of functional networks detected by spatial independent component analysis (sICA) in functional magnetic resonance imaging (fMRI) have been reproducibly described in various studies, little is known about their subcortical components. In this study, we propose a method that extracts cortico-subcortical networks from fMRI data by first detecting cortical networks with sICA and then by complementing them with subcortical components using multiple regression, at both the individual and the group levels.
引用
收藏
页码:1169 / 1172
页数:4
相关论文
共 50 条
  • [31] Multimodal Analysis of Cortical Chemoarchitecture and Macroscale fMRI Resting-State Functional Connectivity
    van den Heuvel, Martijn P.
    Scholtens, Lianne H.
    Turk, Elise
    Mantini, Dante
    Vanduffel, Wim
    Barrett, Lisa Feldman
    HUMAN BRAIN MAPPING, 2016, 37 (09) : 3103 - 3113
  • [32] Functional parcellations affect the network measures in graph analysis of resting-state fMRI
    Bahrami, Mohsen
    Hossein-Zadeh, Gholam-Ali
    2014 21TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2014, : 263 - 268
  • [33] Data-driven MEG analysis to extract fMRI resting-state networks
    Pelzer, Esther A.
    Sharma, Abhinav
    Florin, Esther
    HUMAN BRAIN MAPPING, 2024, 45 (04)
  • [34] Increased Functional Connectivity Between Subcortical and Cortical Resting-State Networks in Autism Spectrum Disorder
    Cerliani, Leonardo
    Mennes, Maarten
    Thomas, Rajat M.
    Di Martino, Adriana
    Thioux, Marc
    Keysers, Christian
    JAMA PSYCHIATRY, 2015, 72 (08) : 767 - 777
  • [35] Constructing High-Order Dynamic Functional Connectivity Networks from Resting-State fMRI for Brain Dementia Identification
    Feng, Chunxiang
    Jie, Biao
    Ding, Xintao
    Zhang, Daoqiang
    Liu, Mingxia
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 303 - 311
  • [36] Functional connectivity in resting-state fMRI: Is linear correlation sufficient?
    Hlinka, Jaroslav
    Palus, Milan
    Vejmelka, Martin
    Mantini, Dante
    Corbetta, Maurizio
    NEUROIMAGE, 2011, 54 (03) : 2218 - 2225
  • [37] Investigating changes of functional brain networks in major depressive disorder by graph theoretical analysis of resting-state fMRI
    Agziyart, Elnaz Akbarpouri
    Abbasian, Karim
    Makouei, Somaye
    Mohammadi, Sana Beyg
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2024, 334
  • [38] The Functional Architecture of the Infant Brain as Revealed by Resting-State fMRI
    Fransson, Peter
    Aden, Ulrika
    Blennow, Mats
    Lagercrantz, Hugo
    CEREBRAL CORTEX, 2011, 21 (01) : 145 - 154
  • [39] Connectivity networks in gambling disorder: a resting-state fMRI study
    van Timmeren, Tim
    Zhutovsky, Paul
    van Holst, Ruth J.
    Goudriaan, Anna E.
    INTERNATIONAL GAMBLING STUDIES, 2018, 18 (02) : 242 - 258
  • [40] Resting-State fMRI Networks in Children with Tuberous Sclerosis Complex
    Ahtam, Banu
    Dehaes, Mathieu
    Sliva, Danielle D.
    Peters, Jurriaan M.
    Krueger, Darcy A.
    Bebin, Elizabeth Martina
    Northrup, Hope
    Wu, Joyce Y.
    Warfield, Simon K.
    Sahin, Mustafa
    Grant, Patricia Ellen
    Goyal, Monisha
    Pearson, Deborah A.
    Williams, Marian E.
    Hanson, Ellen
    Bing, Nicole
    Kent, Bridget
    O'Kelley, Sarah
    Filip-Dhima, Rajna
    Dies, Kira
    Bruns, Stephanie
    Scherrer, Benoit
    Cutter, Gary
    Murray, Donna S.
    Roberds, Steven L.
    JOURNAL OF NEUROIMAGING, 2019, 29 (06) : 750 - 759