Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering

被引:62
作者
Chauhan, Pranjal [1 ]
Yebaji, Sushil [1 ]
Nadakuduru, Vijay N. [2 ]
Shanmugasundaram, T. [1 ]
机构
[1] Def Inst Adv Technol, Dept Met & Mat Engn, Pune, Maharashtra, India
[2] Malaviya Natl Inst Technol, Jaipur, Rajasthan, India
关键词
Light-weight alloys; High entropy alloys; Mechanical alloying; Microstructures; Hardness; PHASE-STABILITY; SOLID-SOLUTION; MICROSTRUCTURE;
D O I
10.1016/j.jallcom.2019.153367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new light-weight high entropy alloy (LWHEA) composition Al35Cr14Mg6Ti35V10 is designed using the thermodynamic parameters of stability with a density of 4.05 g cm(-3). The alloy was prepared by mechanical alloying (MA) using a high-energy planetary ball milling and compacted by using spark plasma sintering (SPS). X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), and hardness testing were used for analysis of the ball-milled powders and bulk sample. After 30h of milling a single-phase BCC was obtained with some minor impurities of WC. After SPS, the final microstructure was having one HCP and two BCC phases with minor contamination of WC embedded into it. The hardness of a light-weight Al35Cr14Mg6Ti35V10 alloy was found to be 460 HV which is superior to other Al, Mg, and Ti-based conventional alloys. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 22 条
[11]   Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions [J].
Li, Rui ;
Gao, Jia-cheng ;
Fan, Ke .
ADVANCED STRUCTURAL MATERIALS, 2011, 686 :235-241
[12]   Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures [J].
Mertens, A. ;
Reginster, S. ;
Paydas, H. ;
Contrepois, Q. ;
Dormal, T. ;
Lemaire, O. ;
Lecomte-Beckers, J. .
POWDER METALLURGY, 2014, 57 (03) :184-189
[13]   Structural characterization of the aged Inconel 718 [J].
Slama, C ;
Abdellaoui, M .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 306 (1-2) :277-284
[14]   Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy [J].
Stepanov, N. D. ;
Yurchenko, N. Yu. ;
Panina, E. S. ;
Tikhonovsky, M. A. ;
Zherebtsov, S. V. .
MATERIALS LETTERS, 2017, 188 :162-164
[15]   Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys [J].
Stepanov, N. D. ;
Yurchenko, N. Yu ;
Skibin, D. V. ;
Tikhonovsky, M. A. ;
Salishchev, G. A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 652 :266-280
[16]   Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy [J].
Stepanov, N. D. ;
Shaysultanov, D. G. ;
Salishchev, G. A. ;
Tikhonovsky, M. A. .
MATERIALS LETTERS, 2015, 142 :153-155
[17]   Phase Stability of a Mechanically Alloyed CoCrCuFeNi High Entropy Alloy [J].
Thangaraju, Shanmugasundaram ;
Bouzy, Emmanuel ;
Hazotte, Alain .
ADVANCED ENGINEERING MATERIALS, 2017, 19 (08)
[18]   A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35 [J].
Tseng KoKai ;
Yang YaChu ;
Juan ChienChang ;
Chin TsungShune ;
Tsai CheWei ;
Yeh JienWei .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (02) :184-188
[19]  
Xing-hao Du, 2017, Key Engineering Materials, V727, P132, DOI 10.4028/www.scientific.net/KEM.727.132
[20]   Phase Stability of Low-Density, Multiprincipal Component Alloys Containing Aluminum, Magnesium, and Lithium [J].
Yang, X. ;
Chen, S. Y. ;
Cotton, J. D. ;
Zhang, Y. .
JOM, 2014, 66 (10) :2009-2020