Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions

被引:15
作者
Conti, Sergio
Dolzmann, Georg
Kirchheim, Bernd
机构
[1] Univ Duisburg Essen, Fachbereich Math, D-47057 Duisburg, Germany
[2] Univ Regensburg, NWF I Math, D-93040 Regensburg, Germany
[3] Math Inst, Oxford OX1 3LB, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2007年 / 24卷 / 06期
基金
美国国家科学基金会;
关键词
differential inclusions; nonlinear elasticity; convex integration; solid-solid phase transitions;
D O I
10.1016/j.anihpc.2006.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The three-well problem consists in looking for minimizers u: Omega subset of R-3 -> R-3 of a functional I(u) = integral del W(del u)dx, where the elastic energy W models the tetragonal phase of a phase-transforming material. In particular, W attains its minimum on K = boolean OR(3)(i=1) SO(3)Ui, with Ui being the three distinct diagonal matrices with eigenvalues (lambda, lambda,(lambda) over bar), lambda, lambda > 0 and lambda not equal (lambda) over bar. We show that, for boundary values F in a suitable relatively open subset of M-3 x3 boolean AND {F: det F = det U-1}, the differential inclusion [GRAPHICS] has Lipschitz solutions. (c) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:953 / 962
页数:10
相关论文
共 26 条
[1]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[2]   Soft elasticity and microstructure in smectic C elastomers [J].
Adams, James ;
Conti, Sergio ;
DeSimone, Antonio .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2007, 18 (06) :319-334
[3]   PROPOSED EXPERIMENTAL TESTS OF A THEORY OF FINE MICROSTRUCTURE AND THE 2-WELL PROBLEM [J].
BALL, JM ;
JAMES, RD .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1650) :389-450
[4]   Some open problems in elasticity [J].
Ball, JM .
GEOMETRY, MECHANICS AND DYNAMICS: VOLUME IN HONOR OF THE 60TH BIRTHDAY OF J. E. MARSDEN, 2002, :3-59
[5]   FINE PHASE MIXTURES AS MINIMIZERS OF ENERGY [J].
BALL, JM ;
JAMES, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 100 (01) :13-52
[6]   SELF-ACCOMMODATION IN MARTENSITE [J].
BHATTACHARYA, K .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 120 (03) :201-244
[7]  
CHIPOT M, 1988, ARCH RATION MECH AN, V103, P237
[8]  
Conti S, 2003, TRENDS IN NONLINEAR ANALYSIS, P375
[9]   General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases [J].
Dacorogna, B ;
Marcellini, P .
ACTA MATHEMATICA, 1997, 178 (01) :1-37
[10]  
Dacorogna B, 1996, CR ACAD SCI I-MATH, V323, P599