Query Processing for Streaming RDF Data

被引:0
作者
Shah, Ruchita [1 ]
Pandat, Ami [1 ]
Bhise, Minal [1 ]
机构
[1] DA IICT, Distributed Database Grp, Gandhinagar, India
来源
2018 4TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2018) | 2018年
关键词
Query Processing; RDF; Streaming data; Triple Wave;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays enormous amount of data is generated due to growing use of sensor technologies in various real-time application domains like social network, weather, transportation and healthcare. This data is mostly in the form of continuous streams. To process such streams RDF Stream Processing technology is used in which streams are represented in RDF format. The goal of this paper is to develop the Query Processing Architecture for Streaming RDF Data and evaluate the performance of model by analyzing the output metrics (execution time and memory consumption) for the queries with different complexities (Select, Aggregation, Joins). We identify the input parameters (window size, type of window, aggregation functions, number of joins, and number of triples) that directly impact the output metrics. Finally, we analyze and discuss the type of window algorithm which can be used for different types of queries based on the output metrics.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 50 条
  • [31] Query Execution for RDF Data using Structure Indexed Vertical Partitioning
    Shah, Bhavik
    Padiya, Trupti
    Bhise, Minal
    2015 IEEE 29TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, 2015, : 575 - 584
  • [32] C-SPARQL: A CONTINUOUS QUERY LANGUAGE FOR RDF DATA STREAMS
    Barbieri, Davide Francesco
    Braga, Daniele
    Ceri, Stefano
    Della Valle, Emanuele
    Grossniklaus, Michael
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2010, 4 (01) : 3 - 25
  • [33] Heuristics-Based Query Processing for Large RDF Graphs Using Cloud Computing
    Husain, Mohammad Farhan
    McGlothlin, James
    Masud, Mohammad Mehedy
    Khan, Latifur R.
    Thuraisingham, Bhavani
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (09) : 1312 - 1327
  • [34] xStore: Federated temporal query processing for large scale RDF triples on a cloud environment
    Ahn, Jinhyun
    Eom, Jae-Hong
    Nam, Sejin
    Zong, Nansu
    Im, Dong-Hyuk
    Kim, Hong-Gee
    NEUROCOMPUTING, 2017, 256 : 5 - 12
  • [35] Efficient Spatio-temporal RDF Query Processing in Large Dynamic Knowledge Bases
    Vlachou, Akrivi
    Doulkeridis, Christos
    Glenis, Apostolos
    Santipantakis, Georgios M.
    Vouros, George A.
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 439 - 447
  • [36] QUIOW: A Keyword-Based Query Processing Tool for RDF Datasets and Relational Databases
    Izquierdo, Yenier T.
    Garcia, Grettel M.
    Menendez, Elisa S.
    Casanova, Marco A.
    Dartayre, Frederic
    Levy, Carlos H.
    DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2018), PT II, 2018, 11030 : 259 - 269
  • [37] Theory and Practice of Relational-to-RDF Temporal Data Exchange and Query Answering
    Ao, Jing
    Cheng, Zehui
    Chirkova, Rada
    Kolaitis, Phokion G.
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2023, 15 (02):
  • [38] RDF Data Storage andQuery Processing Schemes: A Survey
    Wylot, Marcin
    Hauswirth, Manfred
    Cudre-Mauroux, Philippe
    Sakr, Sherif
    ACM COMPUTING SURVEYS, 2018, 51 (04)
  • [39] Diversification on big data in query processing
    Meifan Zhang
    Hongzhi Wang
    Jianzhong Li
    Hong Gao
    Frontiers of Computer Science, 2020, 14
  • [40] Wukong plus G: Fast and Concurrent RDF Query Processing Using RDMA-Assisted GPU Graph Exploration
    Yao, Zihang
    Chen, Rong
    Zang, Binyu
    Chen, Haibo
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (07) : 1619 - 1635